functionalized mesoporous silica
Recently Published Documents


TOTAL DOCUMENTS

790
(FIVE YEARS 127)

H-INDEX

67
(FIVE YEARS 5)

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 203
Author(s):  
Simona Ioniţă ◽  
Daniel Lincu ◽  
Raul-Augustin Mitran ◽  
Laila Ziko ◽  
Nada K. Sedky ◽  
...  

Resveratrol, a naturally occurring polyphenol, has attracted significant attention due to its antioxidant, cardioprotective and anticancer potential. However, its low aqueous solubility limits resveratrol bioavailability and use. In this work, different mesoporous silica matrices were used to encapsulate the polyphenol and to increase its dissolution rate. Pristine MCM-41, MCM-48, SBA-15, SBA-16, FDU-12 and MCF silica were obtained. The influence of SBA-15 functionalized with aminopropyl, isocyanate, phenyl, mercaptopropyl, and propionic acid moieties on resveratrol loading and release profiles was also assessed. The cytotoxic effects were evaluated for mesoporous carriers and resveratrol-loaded samples against human lung cancer (A549), breast cancer (MDA-MB-231) and human skin fibroblast (HSF) cell lines. The effect on apoptosis and cell cycle were assayed for selected resveratrol-loaded carriers. The polyphenol molecules are encapsulated only inside the mesopores, mostly in amorphous state. All materials containing either pristine or functionalized silica carriers increased polyphenol dissolution rate. The influence of the physico-chemical properties of the mesoporous carriers and resveratrol–loaded supports on the kinetic parameters was identified. Resv@SBA-15-SH and Resv@SBA-15-NCO samples exhibited the highest anticancer effect against A549 cells (IC50 values were 26.06 and 36.5 µg/mL, respectively) and against MDA-MB-231 (IC50 values were 35.56 and 19.30 µg/mL, respectively), which highlights their potential use against cancer.


2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Saif-ur-Rehman ◽  
Muhammad Khaliq U Zaman ◽  
Muhammad Ahsan Waseem ◽  
Shafiq Uz Zaman ◽  
Muhammad Shozab Mehdi

In this research, a novel DES (choline chloride + decanoic acid) was synthesized, and SBA-15 was functionalized by the DES to form a DES-SBA filler to fabricate MMMs. DES-SBA-based MMMs at 5%, 10%, 15%, and 20% were synthesized and evaluated. The DES-SBA-based MMMs were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Gas permeation tests were applied to the pure and mixed gas samples, and the results of the permeability and selectivity (CO2/CH4, and CO2/N2) of the membranes are reported. DES modification of SBA-15 increased the efficiency of the synthesized MMMs in comparison with the pristine polysulfone membrane.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Seyed Sepehr Moeini ◽  
Umberto Pasqual Laverdura ◽  
Eleonora Marconi ◽  
Nicola Lisi ◽  
Emanuele Serra ◽  
...  

Catalytic aerobic oxidation of benzyl alcohol (BnOH) to benzaldehyde (PhCHO) over supported noble metal catalysts has grabbed the attention of researchers due to the critical role of PhCHO in numerous industrial syntheses. In the present study, a novel catalyst, Pd-P alloy supported on aminopropyl-functionalized mesoporous silica (NH2-SiO2), was prepared through in situ reduction and characterized by BET-BJH analysis, SEM, TEM, XRD, FTIR, TG-DTA, and XPS. Chemical properties and catalytic performance of Pd-P/NH2-SiO2 were compared with those of Pd0 nanoparticles (NPs) deposited on the same support. Over Pd-P/NH2-SiO2, the BnOH conversion to PhCHO was much higher than over Pd0/NH2-SiO2, and significantly influenced by the nature of solvent, reaching 57% in toluene at 111 °C, with 63% selectivity. Using pure oxygen as an oxidant in the same conditions, the BnOH conversion increased up to 78%, with 66% selectivity. The role of phosphorous in improving the activity may consist of the strong interaction with Pd that favours metal dispersion and lowers Pd electron density.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 53
Author(s):  
Hongjuan Wang ◽  
Xuefei Liu ◽  
Olena Saliy ◽  
Wei Hu ◽  
Jingui Wang

Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xueqin Wang ◽  
Tiandi Xiong ◽  
Miao Cui ◽  
Na Li ◽  
Qin Li ◽  
...  

Abstract Background Multidrug resistance (MDR) is the main challenge of successful chemotherapy for ovarian cancer patients, with 50% to 75% of ovarian cancer patients eventually relapsed due to it. One of the effective strategies for treating MDR and improving therapeutic efficiency of ovarian cancer is to use nanotechnology-based targeted drug delivery systems. In this study, a novel nano targeted co-delivery system modified by hyaluronic acid (HA) was developed by using gold nanorods coated with functionalized mesoporous silica nanoparticles (HA-PTX/let-7a-GNR@MSN) for combined delivery of hydrophobic chemotherapy drug Paclitaxel (PTX) and lethal-7a (let-7a), a microRNA (miR), to overcome MDR in ovarian cancer. Furthermore, we also analyzed the molecular mechanism of this nanotherapeutic system in the treatment of ovarian cancer. Results HA-modified nanocomplexes can specifically bind to the CD44 receptor, which is highly expressed in SKOV3/SKOV3TR cells, achieving effective cell uptake and 150% enhancement of tumor site permeability. The nanosystem realized the stable combination and protective transportation of PTX and miRs. Analysis of drug-resistant SKOV3TR cells and an SKOV3TR xenograft model in BALB/c-nude mice showed significant downregulation of P-glycoprotein in heterogeneous tumor sites, PTX release, and subsequent induction of apoptosis. More importantly, this nanosystem could synergistically inhibit the growth of ovarian tumors. Further studies suggest that mTOR-mediated signaling pathways play an important role in reversing drug resistance and inducing apoptosis. Conclusions To sum up, these data provide a model for overcoming PTX resistance in ovarian cancer. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document