An on-chip circular Sierpinski shaped fractal antenna with defected ground structure for Ku-band applications

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Harshavardhan Singh ◽  
Sameen Azhar ◽  
Sanjukta Mandal ◽  
Sujit Kumar Mandal ◽  
Pamidiparthi Ravi Teja Naidu

Abstract In this paper, a circular Sierpinski shaped on-chip fractal antenna with defected ground structure (DGS) is presented for Ku-band applications. The fractal and defected ground structure are employed to achieve higher bandwidth for the entire Ku-band (12–18 GHz). The proposed on-chip antenna (OCA) with a footprint area of 4π mm2 offers wide bandwidth of 7.22 GHz (11.94–19.13 GHz) with the resonating frequency of 15 GHz. At the resonating frequency, the designed antenna shows a peak gain of −19.76 dBi and a radiation efficiency of 55.6%. The co-polarization (CP) and cross-polarization (×P) characteristics of the proposed OCA shows good isolation of 18.05 dBi and 17.44 dBi in the two principal planes with ϕ = 0° and 90° cuts respectively. The measured result of the designed OCA prototype shows a good performance over the desired frequency band.

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1137
Author(s):  
Changmin Lee ◽  
Jinho Jeong

In this paper, we design a THz CMOS on-chip patch antenna with defected ground structure (DGS) and utilize it to implement a broadband and high gain on-chip antenna array. It is verified from the simulation that the DGS not only can increase the gain and bandwidth of the antenna element, but also can increase the isolation between the antenna elements in the on-chip array. Therefore, it allows the design of the compact 1 × 2 and 2 × 2 on-chip antenna array with high gain and broad bandwidth. The element spacing and feedline structures of the antenna array are designed and optimized by the simulations. The designed antenna element, and 1 × 2 and 2 × 2 antenna arrays are fabricated in a commercial 65 nm CMOS process. In the on-wafer measurement, they exhibit an antenna gain of 3.1 dBi, 7.2 dBi, and 8.2 dBi with a bandwidth of 14.0%, 21.3%, and 28.0% for the reflection coefficient less than −10 dB, respectively, at 300 GHz. This result corresponds to very good performance compared to the reported THz CMOS on-chip antenna array. Therefore, the designed CMOS on-chip antenna element and array using DGS in this work can be effectively applied to build low-cost and high performance THz systems, because they can be fully implemented in a conventional CMOS process without requiring any additional processes or manufacturing techniques.


2021 ◽  
Vol 36 (6) ◽  
pp. 718-725
Author(s):  
Narayanasamy RajeshKumar ◽  
Palani Sathya ◽  
Sharul Rahim ◽  
Akaa Eteng

An innovative method is proposed to improve the cross-polarization performance and impedance matching of a microstrip antenna by integrating a complimentary split ring resonator and slots as a defected ground structure. An equivalent circuit model (ECM) enables the design take into consideration the mutual coupling between the antenna patch and the Defected Ground Structure. The input impedance and surface current density analysis confirms that the integration of a CSRR within a rectangular microstrip patch antenna leads to uniform comparative cross-polarization level below 40 dB in the H-plane, over an angular range of ± 50°. Introducing parallel slots, as well, leads to a reduction of spurious antenna radiation, thereby improving the impedance matching. Measurements conducted on a fabricated prototype are consistent with simulation results. The proposed antenna has a peak gain of 4.16 dB at 2.6 GHz resonating frequency, and hence is good candidate for broadband service applications.


2017 ◽  
Vol 38 (5) ◽  
pp. 626-629 ◽  
Author(s):  
Yi Zhong ◽  
Yang Yang ◽  
Xi Zhu ◽  
Eryk Dutkiewicz ◽  
Kam Man Shum ◽  
...  

2018 ◽  
Vol 7 (3.31) ◽  
pp. 40 ◽  
Author(s):  
P Krishna Kanth Varma ◽  
Ch Murali Krishna ◽  
G Santhi Ratna Priyanka

A hybrid fractal antenna inspired from sri yantra geometry covering multiple bands in the microwave frequency spectrum is presented in this paper with a reduced size of 45mm x 30mm x 1.6mm. The presented design aims at a multiband antenna with a polygon slots in- scribed in a circular patch with defected ground structure and the effect of Sri Yantra fractal iterations on the antenna characteristics are also studied. The gains achieved at respective bands for Sri Yantra geometry are 4.61dB at 4.04GHz, 2.71dB at 4.94GHz, 4.77dB at 5.88GHz, 3.41dB at 6.60GHz, 5.12dB at 7.24GHz, 3.11dB at 8.88GHz and 3.47dB at 10.92GHz.  


2013 ◽  
Vol 385-386 ◽  
pp. 1292-1295
Author(s):  
Xu Han ◽  
Jian Hua Xu

A planar power divider operating over the whole Ku-band is presented. The proposed device utilizes a T-microstrip junction combined with defected ground structure and an elliptical patch at the centre of the T-junction. An isolation resistor is connected across the slotted ground plane. The simulated results of the divider show equal power split, insertion loss is less than 0.3dB, return loss of all ports are better than 15dB, and isolation is better than 15dB over the whole Ku-band.


Sign in / Sign up

Export Citation Format

Share Document