brown tides
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 8 ◽  
Author(s):  
Eve Galimany ◽  
Jessica Lunt ◽  
Christopher J. Freeman ◽  
I. Segura-García ◽  
M. Mossop ◽  
...  

Brown tides formed by Aureoumbra lagunensis decrease light penetration in the water column and are often followed by hypoxic events that result in the loss of fish and shellfish. To understand the ability of bivalve filter feeders to control and prevent A. lagunensis blooms, we exposed eastern oysters (Crassostrea virginica), hooked mussels (Ischadium recurvum), and hard clams (Mercenaria mercenaria) to a naturally co-occurring brown tide in the Indian River Lagoon (IRL), Florida, United States. Bivalves were exposed in the laboratory to multiple concentrations (104 to 106 cells mL–1) of isotopically labeled (13C and 15N) A. lagunensis cells. The standard clearance rate (herein clearance rate) of each bivalve species was calculated using flow cytometry to quantify A. lagunensis cell removal. The highest clearance rates were at 104 cells mL–1, but values varied across bivalve species (2.16 ± 0.30, 3.03 ± 0.58, and 0.41 ± 0.12 L h–1 for C. virginica, I. recurvum, and M. mercenaria, respectively). Although clearance rates decreased with increasing bloom concentrations, bivalves were still consuming algal cells at all concentrations and were retaining and assimilating more cells at the highest concentrations, as revealed by δ13C and δ15N values. We highlight interspecific differences among bivalve species in the removal of A. lagunensis, supporting the importance of healthy and diverse filter feeding communities in estuaries, especially as threats of brown tides and other HABs are increasing in the Anthropocene.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eric R. Gann ◽  
Yoonja Kang ◽  
Sonya T. Dyhrman ◽  
Christopher J. Gobler ◽  
Steven W. Wilhelm

There is growing interest in the use of metatranscriptomics to study virus community dynamics. We used RNA samples collected from harmful brown tides caused by the eukaryotic alga Aureococcus anophagefferens within New York (United States) estuaries and in the process observed how preprocessing of libraries by either selection for polyadenylation or reduction in ribosomal RNA (rRNA) influenced virus community analyses. As expected, more reads mapped to the A. anophagefferens genome in polyadenylation-selected libraries compared to the rRNA-reduced libraries, with reads mapped in each sample correlating to one another regardless of preprocessing of libraries. Yet, this trend was not seen for reads mapping to the Aureococcus anophagefferens Virus (AaV), where significantly more reads (approximately two orders of magnitude) were mapped to the AaV genome in the rRNA-reduced libraries. In the rRNA-reduced libraries, there was a strong and significant correlation between reads mappings to AaV and A. anophagefferens. Overall, polyadenylation-selected libraries produced fewer viral contigs, fewer reads mapped to viral contigs, and different proportions across viral realms and families, compared to their rRNA-reduced pairs. This study provides evidence that libraries generated by rRNA reduction and not selected for polyadenylation are more appropriate for quantitative characterization of viral communities in aquatic ecosystems by metatranscriptomics.


2020 ◽  
Author(s):  
Pascal Jean Lopez ◽  
Vincent Hervé ◽  
Josie Lambourdière ◽  
Malika René-Trouillefou ◽  
Damien Devault

Abstract BackgroundOver the last decade, intensity and frequency of Sargassum blooms in the Caribbean Sea and central Atlantic Ocean have dramatically increased, causing growing ecological, social and economic concern throughout the entire Caribbean region. These golden-brown tides form an ecosystem that maintains life for a large number of associated species, and their circulation across the Atlantic Ocean support the displacement and maybe the settlement of various species, especially microorganisms. To comprehensively identify the micro- and meiofauna associated to Sargassum, one hundred samples were collected during the 2018 tide events that were the largest ever recorded.ResultsWe investigated the composition and the existence of specific species in three compartments, namely, Sargassum at tide sites, in the surrounding seawater, and in inland seaweed storage sites. Metabarcoding data revealed shifts between compartments in both prokaryotic and eukaryotic communities, and large differences for eukaryotes especially bryozoans, nematodes and ciliates. Among the most abundant nematodes, we identified various bacterivores in all compartments, suggesting trophic interactions in Sargassum tides. We also found a number of species of interest, including methanogenic archaea, sulfate- and nitrate-reducing bacteria as well as putative pathogens.ConclusionsHere we present novel information on the diversity and trophic interactions of the micro- and meiofauna that are associated with Sargassum at tide and storage sites. Such information may help to better understand the ecological consequences of the Sargassum crises, and to develop proper analyses of the Sargassum associated biodiversity that could be important for application purposes such as biogas or fertilizers production, and to local authority for risks assessment.


2019 ◽  
Vol 28 (17) ◽  
pp. 4065-4076 ◽  
Author(s):  
Ying Zhong Tang ◽  
Zhaopeng Ma ◽  
Zhangxi Hu ◽  
Yunyan Deng ◽  
Aoao Yang ◽  
...  

Harmful Algae ◽  
2019 ◽  
Vol 84 ◽  
pp. 127-138 ◽  
Author(s):  
Zhen-Fan Chen ◽  
Qing-Chun Zhang ◽  
Fan-Zhou Kong ◽  
Yang Liu ◽  
Yue Zhao ◽  
...  

2017 ◽  
Vol 122 (1-2) ◽  
pp. 272-281 ◽  
Author(s):  
Brigitta I. van Tussenbroek ◽  
Héctor A. Hernández Arana ◽  
Rosa E. Rodríguez-Martínez ◽  
Julio Espinoza-Avalos ◽  
Hazel M. Canizales-Flores ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document