tunnel diode oscillator
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Koichi Narahara

A one-dimensional lattice in tunnel-diode (TD) oscillators supports self-sustained solitary pulses resulting from the balance between gain and attenuation. By applying the reduction theory to the device’s model equation, it is found that two relatively distant pulses moving in the lattice are mutually affected by a repulsive interaction. This property can be efficiently utilized in equalizing pulse positions to achieve jitter elimination. In particular, when two pulses rotate in a small, closed lattice, they separate evenly at the asymptotic limit. As a result, the lattice loop can provide an efficient platform to obtain low-phase-noise multiphase oscillatory signals. In this work, the interaction between two self-sustained pulses in a TD-oscillator lattice is examined, and the properties of interpulse interaction are validated by conducting several measurements using a test breadboarded lattice.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Wen-Chen Lin ◽  
Daniel J. Campbell ◽  
Sheng Ran ◽  
I-Lin Liu ◽  
Hyunsoo Kim ◽  
...  

Abstract Electrical magnetoresistance and tunnel diode oscillator measurements were performed under external magnetic fields up to 41 T applied along the crystallographic b axis (hard axis) of UTe2 as a function of temperature and applied pressures up to 18.8 kbar. In this work, we track the field-induced first-order transition between superconducting and magnetic field-polarized phases as a function of applied pressure, showing suppression of the transition with increasing pressure until the demise of superconductivity near 16 kbar and the appearance of a pressure-induced ferromagnetic-like ground state that is distinct from the field-polarized phase and stable at zero field. Together with evidence for the evolution of a second superconducting phase and its upper critical field with pressure, we examine the confinement of superconductivity by two orthogonal magnetic phases and the implications for understanding the boundaries of triplet superconductivity.


2020 ◽  
Vol 99 ◽  
pp. 104756
Author(s):  
W. Abd El-Basit ◽  
Z.I.M. Awad ◽  
S.A. Kamh ◽  
F.A.S. Soliman

2019 ◽  
Vol 116 (22) ◽  
pp. 10691-10697 ◽  
Author(s):  
Maxime Leroux ◽  
Vivek Mishra ◽  
Jacob P. C. Ruff ◽  
Helmut Claus ◽  
Matthew P. Smylie ◽  
...  

With the discovery of charge-density waves (CDWs) in most members of the cuprate high-temperature superconductors, the interplay between superconductivity and CDWs has become a key point in the debate on the origin of high-temperature superconductivity. Some experiments in cuprates point toward a CDW state competing with superconductivity, but others raise the possibility of a CDW-superconductivity intertwined order or more elusive pair-density waves (PDWs). Here, we have used proton irradiation to induce disorder in crystals of La1.875Ba0.125CuO4 and observed a striking 50% increase of Tc, accompanied by a suppression of the CDWs. This is in sharp contrast with the behavior expected of a d-wave superconductor, for which both magnetic and nonmagnetic defects should suppress Tc. Our results thus make an unambiguous case for the strong detrimental effect of the CDW on bulk superconductivity in La1.875Ba0.125CuO4. Using tunnel diode oscillator (TDO) measurements, we find indications for potential dynamic layer decoupling in a PDW phase. Our results establish irradiation-induced disorder as a particularly relevant tuning parameter for the many families of superconductors with coexisting density waves, which we demonstrate on superconductors such as the dichalcogenides and Lu5Ir4Si10.


Sign in / Sign up

Export Citation Format

Share Document