central european basin
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 2)

Geosciences ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 22
Author(s):  
Danuta Peryt ◽  
Zofia Dubicka ◽  
Weronika Wierny

Planktonic foraminifera are one of the most stratigraphically important groups of organisms for the Cretaceous system. However, standard foraminiferal zonations based mostly on species from the Tethyan bioprovince are hardly applicable in temperate regions where warm-water taxa are scarce or lacking. We propose a foraminiferal zonation based on foraminiferal events recognized in the northern Foraminiferal Transitional Bioprovince, which likely has a high correlation potential at least at a regional scale. Fifteen planktonic foraminiferal zones are distinguished from the upper Albian up to the uppermost Maastrichtian strata in extra-Carpathian Poland and western Ukraine. From the bottom to the top, Thalmanninella appenninica, Th. globotruncanoides, Th. reicheli, Rotalipora cushmani, Whiteinella archaeocretacea, Helvetoglobotruncana helvetica, Marginotruncana coronata, M. sinuosa, Pseudotextularia nuttalli, Globotruncana linneiana, G. arca, Contusotruncana plummerae, Rugoglobigerina pennyi, Globotruncanella petaloidea and Guembelitria cretacea. These zones are calibrated by macrofaunal zonations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Armin Zeh ◽  
Matthias Franz ◽  
Karsten Obst

The Carnian Stuttgart-Formation (Schilfsandstein) of the Central European Basin contains relics of Triassic volcanic detritus in form of euhedral zircon grains and authigenic analcime. Multiple LA-ICP-MS spot analyses of single zircon crystals from an outcrop near Heilbronn (SW Germany) yielded weighted average 206Pb/238U ages between 250 and 230 Ma, providing evidence for tephra fallout in the southern part of the Central European Basin related to Olenekian, Anisian–Ladinian and Carnian volcanic activity. The tephra was probably transported by monsoonal circulations from volcanic centres of the NW Tethys to the Central European Basin. The four youngest zircon crystals gave a weighted average 206Pb/238U age of 231.1 ± 1.6 Ma (10 analyses), which is interpreted to date syn-depositional tephra fallout into the fluvial Lower Schilfsandstein Member of the Stuttgart Formation. This new maximum depositional age provides the first evidence that deposition of the Stuttgart Formation, which represents the type-example of the mid-Carnian episode, a global episode of enhanced flux of siliciclastic detritus and related environmental perturbations, occurred during the Tuvalian 2 substage at ca. 231 Ma, about 3 million years later than suggested by previous correlations. Zircon grains with weighted average 206Pb/238U ages of 236.0 ± 1.2 Ma (n = 17) and 238.6 ± 1.5 Ma (n = 6) and 206Pb/238U ages between 241 ± 6 and 250 ± 3 Ma point to the presence of tephra in early Carnian to Olenekian strata of the Keuper to Buntsandstein Groups. Traces of these reworked tephra were incorporated into the Stuttgart Formation due to fluvial erosion in the southern Central European Basin and at its margins.


Solid Earth ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 1005-1024
Author(s):  
Jakob Bolz ◽  
Jonas Kley

Abstract. Lens-shaped slivers of Permian (Zechstein) amid Triassic units appearing along the master fault of the Sontra Graben in central Germany on the southern margin of the Central European Basin System (CEBS) were studied by means of detailed map analysis, a semi-quantitative forward model, and two balanced cross sections. We show how partial reactivation of the graben's main normal fault and shortcut thrusting in the footwall during inversion, combined with a specific fault geometry involving flats in low-shear-strength horizons, can produce the observed slivers of “exotic” Zechstein. This conceptual model implies that the Sontra Graben was created by about 1200 m of extension followed by some 1000 m of contraction, resulting in the few hundred meters of net extension observed today. Gentle dips and comparatively extensive exposure of some slivers suggest they are backthrust onto the reactivated normal fault's hanging wall, an interpretation corroborated in one location by shallow drilling. Backthrusting appears to have wedged some Zechstein slivers into incompetent Triassic units of the hanging wall. Based on regional correlation, extension most likely occurred in Late Triassic to Early Cretaceous time, while the contraction is almost certainly of Late Cretaceous age. The main aim of this paper is to describe an uncommon structural feature that we interpret to originate from inversion tectonics in an evaporite-bearing succession with multiple detachment horizons but without the presence of thick salt.


Zootaxa ◽  
2021 ◽  
Vol 4964 (3) ◽  
pp. 471-496
Author(s):  
FRANK SCHOLZE ◽  
RAFEL MATAMALES-ANDREU

We describe four upper Lower Triassic to lower Middle Triassic clam shrimp-bearing intervals from Mallorca, which include the clam shrimp species Hornestheria sp. aff. Hornestheria sollingensis and several other forms of carapace valve morphology: Hornestheria? Morphotype 1, Hornestheria? Morphotype 2, and other undetermined carapace valves. All of this material was obtained from red-bed units cropping out in the Serra de Tramuntana mountains of Mallorca (western Mediterranean). Except for a few morphologically similar carapace valves of Middle Triassic age from China, Hornestheria is known only from the type locality of its type species, Hornestheria sollingensis Kozur et Lepper, in the Solling Formation (Middle Buntsandstein Subgroup) in the German part of the Central European Basin. According to its original definition, the larval carapace valve of Hornestheria Kozur et Lepper is characterized by a radial sculpture, but this characteristic apparently is only variably developed. Due to both a limited number of previously known occurrences of Hornestheria and its poorly known carapace valve morphology, open nomenclature is applied to the taxonomy herein. The studied specimens were freshly collected from outcrop sections composed of greyish-green to greyish-red laminated claystones and siltstones that accumulated in a fluvial facies. The clam shrimp specimens are accompanied by remains of insects and fishes, invertebrate and tetrapod ichnofossils, and micro-/macroplant remains, all of which either have been described by previous workers or are currently part of a separate study. 


2021 ◽  
Vol 14 (3) ◽  
pp. 1699-1719
Author(s):  
Denise Degen ◽  
Mauro Cacace

Abstract. Transient processes play a major role in geophysical applications. In this paper, we quantify the significant influence arising from transient processes for conductive heat transfer problems for sedimentary basin systems. We demonstrate how the thermal properties are affected when changing the system from a stationary to a non-stationary (transient) state and what impact time-dependent boundary conditions (as derived from paleoclimate information) have on the system's overall response. Furthermore, we emphasize the importance of the time-stepping approach adopted to numerically solve for the transient case and the overall simulation duration since both factors exert a direct influence on the sensitivities of the thermal properties. We employ global sensitivity analyses to quantify not only the impact arising from the thermal properties but also their parameter correlations. Furthermore, we showcase how the results of such sensitivity analysis can be used to gain further insights into the complex Central European Basin System in central and northern Europe. This computationally very demanding workflow becomes feasible through the construction of high-precision surrogate models based on the reduced basis (RB) method.


Sign in / Sign up

Export Citation Format

Share Document