lagrange points
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Sergey A. Shteingolts ◽  
Adam I. Stash ◽  
Vladimir G. Tsirelson ◽  
Robert R. Fayzullin

Intricate behavior of one-electron potentials from the Euler equation for electron density and corresponding gradient force fields in crystals was studied. Bosonic and fermionic quantum potentials were utilized in bonding analysis as descriptors of the localization of electrons and electron pairs. Channels of locally enhanced kinetic potential and the corresponding saddle Lagrange points were found between chemically bonded atoms linked by the bond paths. Superposition of electrostatic φ_es (r) and kinetic φ_k (r) potentials and electron density ρ(r) allowed partitioning any molecules and crystals into atomic ρ- and potential-based φ-basins; the φ_k-basins explicitly account for electron exchange effect, which is missed for φ_es-ones. Phenomena of interatomic charge transfer and related electron exchange were explained in terms of space gaps between ρ- and φ-zero-flux surfaces. The gap between φ_es- and ρ-basins represents the charge transfer, while the gap between φ_k- and ρ-basins is proposed to be a real-space manifestation of sharing the transferred electrons. The position of φ_k-boundary between φ_es- and ρ-ones within an electron occupier atom determines the extent of electron sharing. The stronger an H‧‧‧O hydrogen bond is, the deeper hydrogen atom’s φ_k-basin penetrates oxygen atom’s ρ-basin. For covalent bonds, a φ_k-boundary closely approaches a φ_es-one indicating almost complete sharing the transferred electrons, while for ionic bonds, the same region corresponds to electron pairing within the ρ-basin of an electron occupier atom.


2021 ◽  
Vol 3 (6) ◽  
pp. 61-65
Author(s):  
Jiří Stávek

We have studied the contributions and presentations published in the Proceedings of the Solvay Conference 1911. Based on the lecture of Ernest Solvay on the “gravito-matérialitique” we can distinguish two features of the Earth´s gravitational field – 1. “gravité réelle” described by the Newton´s gravitational law and 2. “gravité potentielle” acting as an agent of the self-organization on quantum particles and creating structures described by the Planck constant hEARTH. From the discussions followed after the presentations of Walther Nernst and Albert Einstein we interpreted the Nernst- Lindemann Formula for the specific heat of solids using the comment of Heike Kamerlingh Onnes (the discoverer of the superconductivity) as two transverse and one longitudinal oscillations of phonon in the surroundings at temperature T. In order to falsify this “geocentric” model of foundations of quantum mechanics in the spirit of Karl Popper we propose to initiate the CURE Project (China – USA – Russia – European Union) (cure = to solve a problem) in order to build quantum laboratories on different orbits around the Earth, on the surface of the Moon and Mars, and in the Lagrange points of the system the Earth – Moon and the Earth – Sun to get new experimental data for the specific heat of solids, the critical temperatures of superconductors, chemical and physical self-organized reactions (Liesegang rings, Belousov- Zhabotinsky waves, chemical clocks, Bose-Einstein condensates, de Broglie waves, etc.). There is space enough for all participants on this CURE Project to collect new valuable data describing this “hidden variable” presented by Ernest Solvay in his forgotten lecture in 1911.


2021 ◽  
Vol 922 (2) ◽  
pp. L25
Author(s):  
Man-To Hui ◽  
Paul A. Wiegert ◽  
David J. Tholen ◽  
Dora Föhring

Abstract The Earth Trojans are coorbitals librating around the Lagrange points L 4 or L 5 of the Sun–Earth system. Although many numerical studies suggest that they can maintain their dynamical status and be stable on timescales up to a few tens of thousands of years or even longer, they remain an elusive population. Thus far only one transient member (2010 TK7) has been discovered serendipitously. Here, we present a dynamical study of asteroid 2020 XL5. With our meticulous follow-up astrometric observations of the object, we confirmed that it is a new Earth Trojan. However, its eccentric orbit brings it close encounters with Venus on a frequent basis. Based on our N-body integration, we found that the asteroid was captured into the current Earth Trojan status in the fifteenth century, and then it has a likelihood of 99.5% to leave the L 4 region within the next ∼10 kyr. Therefore, it is most likely that 2020 XL5 is dynamically unstable over this timescale.


2021 ◽  
Vol 2 ◽  
Author(s):  
Francisco P. J. Valero ◽  
Alexander Marshak ◽  
Patrick Minnis

A new perspective for studying Earth processes has been soundly demonstrated by the Deep Space Climate Observatory (DSCOVR) mission. For the past 6 years, the first Earth-observing satellite orbiting at the Lagrange 1 (L1) point, the DSCOVR satellite has been viewing the planet in a fundamentally different way compared to all other satellites. It is providing unique simultaneous observations of nearly the entire sunlit face of the Earth at a relatively high temporal resolution. This capability enables detailed coverage of evolving atmospheric and surface systems over meso- and large-scale domains, both individually and as a whole, from sunrise to sunset, under continuously changing illumination and viewing conditions. DSCOVR’s view also contains polar regions that are only partially seen from geostationary satellites (GEOs). To exploit this unique perspective, DSCOVR instruments provide multispectral imagery and measurements of the Earth’s reflected and emitted radiances from 0.2 to 100 µm. Data from these sensors have been and continue to be utilized for a great variety of research involving retrievals of atmospheric composition, aerosols, clouds, ocean, and vegetation properties; estimates of surface radiation and the top-of-atmosphere radiation budget; and determining exoplanet signatures. DSCOVR’s synoptic and high temporal resolution data encompass the areas observed during the day from low Earth orbiting satellites (LEOs) and GEOs along with occasional views of the Moon. Because the LEO and GEO measurements can be easily matched with simultaneous DSCOVR data, multiangle, multispectral datasets can be developed by integrating DSCOVR, LEO, and GEO data along with surface and airborne observations, when available. Such datasets can open the door for global application of algorithms heretofore limited to specific LEO satellites and development of new scientific tools for Earth sciences. The utility of the integrated datasets relies on accurate intercalibration of the observations, a process that can be facilitated by the DSCOVR views of the Moon, which serves as a stable reference. Because of their full-disc views, observatories at one or more Lagrange points can play a key role in next-generation integrated Earth observing systems.


Author(s):  
V. A. Golov ◽  
D. A. Petrusevich

In the paper Sloan Digital Sky Survey DR14 dataset was investigated. It contains statistical information about many astronomical objects. The information was obtained within the framework of the Sloan Digital Sky Survey project. There are telescopes at the Earth surface, at the Earth orbit and in the Lagrange points of some systems (Earth–Moon, Sun–Earth). The telescopes gain information in different frequency ranges. The large quantity of statistical information leads to the demand for analytical algorithms and systems capable of making classification. Such information is marked up well enough to build machine learning classification systems. The paper presents the results of a number of classifiers. The handled data contains measures of three types of astronomical objects of the Sloan Digital Sky Survey DR14 dataset (star, quasar, galaxy). The CART decision tree, logistic regression, naïve Bayes classifiers and ensembles of classifiers (random forest, gradient boosting) were implemented. Conclusions about special features of each machine learning classifier trained to solve this task are made at the end of the paper. In some cases, classifiers’ structure can be explained physically. The accuracy of the classifiers built in this research is more than 90% (metrics F1, precision and recall are implemented, because the classes are unbalanced). Taking these values into account classification task is supposed to be successfully solved. At the same time, the structure of classifiers and importance of features can be used as a physical explanation of the solution.


Author(s):  
Angelo Tartaglia ◽  
Massimo Bassan ◽  
Lorenzo Casalino ◽  
Mariateresa Crosta ◽  
Mario Lattanzi ◽  
...  

AbstractWe propose to locate transponders and atomic clocks in at least three of the Lagrange points of the Sun-Earth pair, with the aim of exploiting the time of flight asymmetry between electromagnetic signals travelling in opposite directions along polygonal loops having the Lagrange points at their vertices. The asymmetry is due to the presence of a gravito-magnetic field partly caused by the angular momentum of the Sun, partly originating from the angular momentum of the galactic dark halo in which the Milky Way is embedded. We list also various opportunities which could be associated with the main objective of this Lagrange Dark Halo Detector (LaDaHaD).


Author(s):  
Robert A. Bettinger ◽  
Nathan Boone ◽  
Nicolas S. Hamilton ◽  
Bryan D. Little

Sign in / Sign up

Export Citation Format

Share Document