Seismic performance evaluation and experimental validation of steel-fiber-reinforced high-strength-concrete composite shear walls

Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 765-779
Author(s):  
Ying Zhang ◽  
Hongmei Zhang ◽  
Xilin Lu
2021 ◽  
Vol 8 ◽  
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Huakun Zhang

In order to study the seismic performance of high-strength concrete composite shear walls with embedded steel strips, four tests for high-strength concrete composite shear walls with embedded steel strips (SPRCW-1 to SPRCW-4) were constructed and tested. Based on the test results, a discussion is provided in the present study on the hysteresis curve, backbone curves, and strain of steel plate and distributed reinforcement of high-strength concrete mid-rise and high-rise composite shear walls with embedded steel strips under different steel ratios and different steel strip positions. The test results reveal that in high-strength composite shear walls with embedded steel strips, the ductility of the test specimen can be effectively improved when the ratio of the steel strip reaches a certain level. In parallel, when the embedded steel strip is placed on both sides of the walls, the steel strip can function better. The ultimate displacement is better than when the steel strip is placed in the middle of the walls, and can effectively improve the seismic performance of the walls. The scheme with embedded steel strips is more convenient and economical for construction, which is suitable for popularization and application in middle-high buildings in highly seismic regions.


2018 ◽  
Vol 2018 ◽  
pp. 1-18
Author(s):  
Min Gan ◽  
Yu Yu ◽  
Liren Li ◽  
Xisheng Lu

Four test pieces with different steel plate center-to-center distances and reinforcement ratios are subjected to low-cycle repeat quasistatic loading to optimize properties as failure mode, hysteretic curve, skeleton curve, energy dissipation parameters, strength parameters, and seismic performance of high-strength concrete low-rise shear walls. The embedded steel plates are shown to effectively restrict wall crack propagation, enhance the overall steel ratio, and improve the failure mode of the wall while reducing the degree of brittle failure. Under the same conditions, increasing the spacing between the steel plates in the steel plate concrete shear wall can effectively preserve the horizontal bearing capacity of the shear wall under an ultimate load. The embedded steel plates perform better than concealed bracing in delaying stiffness degeneration in the low-rise shear walls, thus safeguarding their long-term bearing capacity. The results presented here may provide a workable basis for shear wall design optimization.


2012 ◽  
Vol 594-597 ◽  
pp. 1816-1821
Author(s):  
Yi Sheng Su ◽  
Jin Yun Quan ◽  
Wen Zhang ◽  
Yi Bin Yang

In order to discuss how the different forms of steel impact on seismic behavior of steel reinforced high-strength concrete(SRHC) L-shape short-pier shear wall, four different steel forms SRHC L-shaped section short-pier shear wall members with low reversed cyclic loading were simulated by ABAQUS. The four steel forms were steel bar, solid-web steel, truss-type steel and hole-type steel. The result show that: different steel forms can significantly impact on the seismic performance of SRHC L-shaped section short-pier shear walls and the seismic capacity range from high to low as follow: with solid-web steel, with hole-type steel, with truss-type steel and reinforced.


2019 ◽  
Vol 9 (14) ◽  
pp. 2820 ◽  
Author(s):  
Dongqi Jiang ◽  
Congzhen Xiao ◽  
Tao Chen ◽  
Yuye Zhang

Shear walls are effective lateral load resisting elements in high-rise buildings. This paper presents an experimental study of the seismic performance of a composite shear wall system that consists of high-strength concrete walls with the embedded steel plate. Two sets of wall specimens with different aspect ratios (height/width, 1.5 and 2.7) were constructed and tested under quasi-static reversed cyclic loading, including five reinforced concrete shear walls (RCSW) and six reinforced concrete-steel plate shear walls (RCSPSW). The progression of damage, failure modes, and load-displacement responses of test specimens were studied and compared based on experimental observations. The test results indicated that high-strength (HS) RCSPSW system showed superior lateral load strength and acceptable deformation capability. The axial compressive load was found to have an indispensable effect on the ductility of both RCSW and RCSPSW, and an upper limit of axial compression ratio (0.5) is recommended for the application of HS RCSPSW in engineering practices. In addition, the design strength models were suggested for predicting the shear and flexure peak strength values of RCSPSW systems, and their applicability and reliability were verified by comparing with test results.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4016
Author(s):  
Ke Shi ◽  
Mengyue Zhang ◽  
Tao Zhang ◽  
Ru Xue ◽  
Pengfei Li

The present research study aims to investigate numerically the behavior of steel fiber-reinforced high-strength concrete (SFRHC) beam–column joints (BCJs) under seismic action. Based on the plastic damage constitutive model of concrete and elastic–plastic mixed-strengthen constitutive model of steel material, the finite element software ABAQUS was utilized to establish the 3D finite element (FE) model of BCJs. Additionally, the feasibility and accuracy of the numerical simulation were verified by comparing the computed results and experimental observations in terms of the hysteresis curves, skeleton curves, and failure mode. Furthermore, based on the validated FE modeling approach, load vs. displacement hysteresis curves of SFRHC–BCJs during the loading process were analyzed in detail; the failure process was also investigated. Furthermore, the effect of various parameters on the seismic behavior of BCJs was analyzed comprehensively, including the concrete strength, the volume ratio of steel fiber, and the stirrup ratio in the core area. Finally, parametric studies illustrated that increasing the concrete strength helps in enhancing the ultimate load, while the ductility decreased noticeably. Both adding the steel fiber and increasing the stirrup ratio can significantly improve the seismic performance of BCJs.


2014 ◽  
Vol 931-932 ◽  
pp. 463-467
Author(s):  
Kittipoom Rodsin

The principal aim of this research is to improve the seismic performance of high strength concrete (HSC) reinforced columns using fiber reinforced concrete (FRC) by mixing steel fiber into the concrete. Two reinforced concrete columns 200mm x 300mm in cross-section with a height of 1250 mm were tested under cyclic lateral loading. The first specimen was casted using high strength concrete of 100 MPa and the second specimens were also casted using similar concrete strength but the steel fiber of 0.5% by volume was added to the concrete in the plastic hinge region. Both columns were subjected to lateral cyclic load until the failure occurs. The test results showed that the use of FRC in the plastic hinge region could significantly improve column displacement ductility. The maximum drift at column failure at 4.5% for non-ductile column could increase to 8% in FRC column. It is evident that the cracks in FRC column are much smaller properly spread in the plastic hinge region and hence the plastic hinge could be able to rotate without lateral strength being compromised. In FRC column, concrete spalling was observed in a very high drift (7%) and bar buckling occurred at around 8% drift whilst in HSC column concrete spalling and bar buckling occurred at only 3.5% and 4% drift respectively. It was evident that the use of steel fiber in HSC columns could significantly improve seismic performance of the column.


Sign in / Sign up

Export Citation Format

Share Document