peptide probes
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 23 (6) ◽  
pp. 326-332
Author(s):  
N.O. Sitkov ◽  
◽  
T.M. Zimina ◽  
V.V. Luchinin ◽  
A.A. Kolobov ◽  
...  

Ways of creating new generation biosensors for multiparametric express diagnostics based on molecular recognition and direct fluorimetric registration of a peptide aptamer — protein marker complex were considered. The biosensor platform comprises a microfluidic channel for delivery sample solutions, coupled with flow-through zones containing covalently attached arrays of peptide probes — aptamers. An outer glass window of the biochip assembly contains a layer of luminophore ZnS:Cu, bound on it via an acrylic lacquer and intended for the re-emitting native fluorescence of bound proteins into the longer wavelength range, more efficient in registering signals with CMOS sensors. The aptamers were designed using "Protein 3D" program for analysis of spatial complementarity of protein structures. The peptide, complementary to Troponin T, was modified by replacement of aromatic amino acid residue while maintaining the spatial configuration. The complementarity of peptide and Troponin T was confirmed using a capillary electrophoresis-on-a-chip. Biosensors are manufactured using thick-film technology and photolithography. The fluorescence of marker proteins was excited using UV-LED with a radiation wavelength of 275 nm. The limit of detection achieved for Troponin T was 6 ng/ml.


2021 ◽  
Author(s):  
Nora Guidotti ◽  
Ádám Eördögh ◽  
Maxime Mivelaz ◽  
Pablo Rivera-Fuentes ◽  
Beat Fierz

Chromatin is spatially organized into functional states that are defined by both the presence of specific histone post-translational modifications (PTMs) and a defined set of chromatin-associated "reader" proteins. Different models for the underlying mechanism of such compartmentalization have been proposed, including liquid-liquid phase separation (LLPS) of chromatin-associated proteins to drive spatial organization. Heterochromatin, characterized by lysine 9 methylation on histone H3 (H3K9me3) and the presence of heterochromatin protein 1 (HP1) as a multivalent reader, represents a prime example of a spatially defined chromatin state. Heterochromatin foci exhibit features of protein condensates driven by LLPS; however, the exact nature of the physicochemical environment within heterochromatin in different cell types is not completely understood. Here, we present tools to interrogate the environment of chromatin sub-compartments in the form of modular, cell-permeable, multivalent and fluorescent peptide probes. These probes can be tuned to target specific chromatin states by providing binding sites to reader proteins and can thereby integrate into the PTM-reader interaction network. As a target, here we generate probes specific to HP1, directing them to heterochromatin at chromocenters in mouse fibroblasts. Moreover, we use a polarity-sensing photoactivatable probe that photoconverts to a fluorescent state in phase-separated protein droplets and thereby reports on the local microenvironment. Equipped with this dye, our probes indeed turn fluorescent in murine chromocenters. However, image analysis and single-molecule tracking experiments reveal that the compartments are less dense and more dynamic than HP1 condensates obtained in vitro. Our results thus demonstrate that the local organization of heterochromatin in chromocenters is internally more complex than an HP1 condensate.


Author(s):  
Maria Eriksson ◽  
Sara A. Litwak ◽  
Yan Yun ◽  
William J. Stanley ◽  
Peter Thorn ◽  
...  

Author(s):  
Mingmei Guo ◽  
Limin Zhang ◽  
Yuwei Tian ◽  
Minxuan Wang ◽  
Weizhi Wang

2021 ◽  
Vol 96-97 ◽  
pp. S89
Author(s):  
Debora Carpanese ◽  
Cristina Bolzati ◽  
Anna Tosi ◽  
Alessandro Penna ◽  
Sara Brunello ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1485 ◽  
Author(s):  
Amina Rhouati ◽  
Ahlem Teniou ◽  
Mihaela Badea ◽  
Jean Louis Marty

Despite barrier measures and physical distancing tailored by the populations worldwide, coronavirus continues to spread causing severe health and social-economic problems. Therefore, researchers are focusing on developing efficient detection and therapeutic platforms for SARS-CoV2. In this context, various biotechnologies, based on novel molecules targeting the virus with high specificity and affinity, have been described. In parallel, new approaches exploring nanotechnology have been proposed for enhancing treatments and diagnosis. We discuss in the first part of this review paper, the different biosensing and rapid tests based on antibodies, nucleic acids and peptide probes described since the beginning of the pandemic. Furthermore, given their numerous advantages, the contribution of nanotechnologies is also highlighted.


Sign in / Sign up

Export Citation Format

Share Document