geotextile filters
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1377
Author(s):  
Cevat Yaman ◽  
Suriya Rehman ◽  
Tanveer Ahmad ◽  
Yusuf Kucukaga ◽  
Burcu Pala ◽  
...  

Landfills are an example of an environment that contains highly complex communities of microorganisms. To evaluate the microbial community structure, four stainless steel pilot-scale bioreactor landfills with single- and double-layered geotextile fabric were used. Two reactors (R-1 and R-2) contained municipal solid waste (MSW) and sewage sludge, while the other two reactors (R-3 and R-4) contained only MSW. A single layer of geotextile fabric (R2GT3 and R3GT3) was inserted in the drainage layers of the two reactors (R-2 and R-3), while a double layer of geotextile fabric (R4GT2 and R4GT1) was inserted in one of the reactors (R-4). Scanning electron microscopy demonstrated that biomass developed on the geotextile fabrics after 540 days of bioreactor operation. The metagenomics analyses of the geotextile samples by 16S rRNA gene sequencing indicated that the geotextile bacterial communities were dominated by the phyla Firmicutes, Bacteroidetes, and Thermotogeae, while Proteobacteria were detected as the rarest bacterial phylum in all the geotextile samples. Treponema, Caldicoprobacter, and Clostridium were the most dominant anaerobic and fermentative bacterial genera associated with the geotextile fabric in the bioreactors. Euryarchaeota was the predominant archaean phylum detected in all the geotextile samples. In the archaeal communities, Methanosarcina, and Vadin CA11 were identified as the predominant genera. The diversity of microorganisms in landfill bioreactors is addressed to reveal opportunities for landfill process modifications and associated operational optimization. Thus, this study provides insights into the population dynamics of microorganisms in geotextile fabrics used in bioreactor landfills.


2020 ◽  
pp. 004051752097345
Author(s):  
Sheng Liu ◽  
Yuan Wang ◽  
Di Feng

The chemical clogging of geotextiles filters is a common issue, which threatens the safety of engineering projects. To reduce the chemical clogging of nonwoven geotextiles and enhance their drainage capability, a polyurethane foam was innovatively placed under the nonwoven geotextiles in this paper. A series of column tests were conducted to study the mechanism of the polyurethane foam to reduce the chemical clogging of the nonwoven geotextile filters in tailings caused by ferrous iron. In addition, the influence of the concentration of Fe2+, hydraulic gradient and thickness of the tailings specimen on the chemical clogging of the polyurethane foam and nonwoven geotextiles was examined. Less chemical clogging of geotextiles caused by polyurethane foam was observed and the related mechanism was firstly explained. The polyurethane foam under the geotextile reduced the contact between the geotextile and air. As a result, the chemical clogging of the geotextile was alleviated, which increased the drainage capability of the geotextiles. A high water saturation of the polyurethane foam would help to a reduce the extent of the chemical clogging of the geotextile. The chemical clogging characteristics of geotextiles and polyurethane foam under different concentrations of Fe2+ and hydraulic gradients were observed.


2020 ◽  
Vol 28 (1(139)) ◽  
pp. 87-92
Author(s):  
Anna Miszkowska ◽  
Anna Miszkowska ◽  
Eugeniusz Koda ◽  
Zygmunt Krzywosz

Nonwoven geotextile filters have been used in geo-environmental engineering for decades to prevent the movement of base soil fine particles, allowing adequate seepage to flow through the geotextile plane. Most of the design criteria developed for nonwoven geotextiles are based only on the comparison between their characteristic opening size and the indicative diameter of the soil to be filtered. In the meantime, the nonwoven geotextile fibrous structure has an influence on the filtration of the soil-geotextile system. In this paper the numbers of constrictions of nonwoven geotextile samples were determined to verify the existence of a correlation between the geotextile structure and the filtration behaviour of soil-geotextile systems. The compatibility between an internally unstable soil and a nonwoven geotextile filter was evaluated using the gradient ratio test. The results obtained can also be the basis for modifying the geotextile filter design and selection criteria.


2020 ◽  
Vol 164 ◽  
pp. 01019
Author(s):  
Andrey Nikitin ◽  
Olga Zaborskaya

The article describes the feasibility of using a stone-free drainage system for water depression in peaty soils. The purpose of the research is to develop economical and technological engineering solutions for drainage in peat soils. A specimen of a stone-free drainage system, including a perforated corrugated pipe 150 mm in diameter and expanded polysterene pellets as aggregate, was studied in laboratory conditions. Geotextile filters were wrapped around both the aggregate and the drain pipe. The drainage system specimen was subjected to a load equivalent to that applied by 1 to 4 m of backfilling sand. The study established high deformability of the drain pipe and the pelletized expanded polysterene aggregate, as well as a considerable decrease in the aggregate water permeability. Тhe burial depth of a typical stone-free drainage system shall be limited by 2.5 m. The article shows that the presence of clogging particles in drain water may lead to a considerable decrease in permeability of geotextile filters on drain pipes. The proposed design of stone-free drainage system in peaty soils ensures lower material consumption, cost, and workload. To reduce deformations of stone-free drainage system structural components, pipes and aggregate of non-yielding (stiff) materials shall be used.


2019 ◽  
Vol 6 (1) ◽  
pp. 34-46 ◽  
Author(s):  
Suzana A Silva ◽  
Ennio M Palmeira

2017 ◽  
Vol 36 (8) ◽  
pp. 895-906 ◽  
Author(s):  
O. A. Yamini ◽  
M. R. Kavianpour ◽  
S. Hooman Mousavi
Keyword(s):  
Run Up ◽  

Sign in / Sign up

Export Citation Format

Share Document