nonwoven geotextile
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
S. Ramjiram Thakur ◽  
B. P. Naveen ◽  
J. P. Tegar

AbstractGeosynthetics are human made material used to reinforce soils to improve the bearing capacity and permeability of the soil, reducing soil settlement. Geosynthetics application plays a vital role in the highways constructions with no additive layers, such as cement concrete, asphalt concrete, or in a subgrade layer that affects the bearing capacity of unbounded layers. This paper presents the geosynthetics as a tensional material that has been used for reinforcement of clayey soil. Laboratory California bearing ratio (CBR) test samples were prepared with clayey soils. Clayey soil containing unreinforced soil and reinforced soil. The sample comprised thermally bonded nonwoven geotextiles (NW) and superior needle-punched nonwoven geotextiles (SNW) with different characteristics (NW 8, 10, 21, 30 and SNW 14, 25, 62, 75) with three-layered, based on the sample materials to perform defined tests. These tests show that, bearing ratio of reinforced soils with thermally bonded nonwoven geotextiles increases.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1080
Author(s):  
Clever Aparecido Valentin ◽  
Marcelo Kobelnik ◽  
Yara Barbosa Franco ◽  
Fernando Luiz Lavoie ◽  
Jefferson Lins da Silva ◽  
...  

The use of polymeric materials such as geosynthetics in infrastructure works has been increasing over the last decades, as they bring down costs and provide long-term benefits. However, the aging of polymers raises the question of its long-term durability and for this reason researchers have been studying a sort of techniques to search for the required renewal time. This paper examined a commercial polypropylene (PP) nonwoven geotextile before and after 500 h and 1000 h exposure to ultraviolet (UV) light by performing laboratory accelerated ultraviolet-aging tests. The state of the polymeric material after UV exposure was studied through a wide set of tests, including mechanical and physical tests and thermoanalytical tests and scanning electron microscopy analysis. The calorimetric evaluations (DSC) showed distinct behaviors in sample melting points, attributed to the UV radiation effect on the aged samples. Furthermore, after exposure, the samples presented low thermal stability in the thermomechanical analysis (TMA), with a continuing decrease in their thicknesses. The tensile tests showed an increase in material stiffness after exposition. This study demonstrates that UV aging has effects on the properties of the polypropylene polymer.


Author(s):  
Minh-Duc Nguyen ◽  
Minh-Phu Ho

The paper presents a series of modified direct shear tests to investigate the interface shear strength between clay and nonwoven geotextile under different normal stresses and degrees of saturation. The modified direct shear apparatus consists of a 60 mm × 60 mm square shear box assembly with a 60 mm × 60 mm acrylic block inserted in the bottom shear box. A woven geotextile layer was glued to the top of the acrylic block, while the top shear box was filled by the compacted clayey soil. The results revealed that the interface shear strength of clay and nonwoven geotextile reduced by 13.4-27.7% when changing from optimum moisture content (OMC) of the soil to saturation condition. The high permeability of nonwoven geotextile induced the dissipation of excess pore water pressure at the interface when shearing. As a result, the adhesion factor of the clay-geotextile interface increased from about 0.6 for the specimens at OMC to over 0.8 for consolidated saturated specimens. In contrast, for the impermeable reinforcement, the interface shear strength analysis of previous studies shows that the adhesion factor of the reinforcement and clayey soil would be reduced when increasing the water content of the clay specimens. Keywords: adhesion factor; clay; nonwoven geotextile, interface shear strength; saturation.


2020 ◽  
pp. 004051752097345
Author(s):  
Sheng Liu ◽  
Yuan Wang ◽  
Di Feng

The chemical clogging of geotextiles filters is a common issue, which threatens the safety of engineering projects. To reduce the chemical clogging of nonwoven geotextiles and enhance their drainage capability, a polyurethane foam was innovatively placed under the nonwoven geotextiles in this paper. A series of column tests were conducted to study the mechanism of the polyurethane foam to reduce the chemical clogging of the nonwoven geotextile filters in tailings caused by ferrous iron. In addition, the influence of the concentration of Fe2+, hydraulic gradient and thickness of the tailings specimen on the chemical clogging of the polyurethane foam and nonwoven geotextiles was examined. Less chemical clogging of geotextiles caused by polyurethane foam was observed and the related mechanism was firstly explained. The polyurethane foam under the geotextile reduced the contact between the geotextile and air. As a result, the chemical clogging of the geotextile was alleviated, which increased the drainage capability of the geotextiles. A high water saturation of the polyurethane foam would help to a reduce the extent of the chemical clogging of the geotextile. The chemical clogging characteristics of geotextiles and polyurethane foam under different concentrations of Fe2+ and hydraulic gradients were observed.


Sign in / Sign up

Export Citation Format

Share Document