transpacific transport
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

2017 ◽  
Vol 74 (5) ◽  
pp. 1431-1443 ◽  
Author(s):  
E. Kassianov ◽  
M. Pekour ◽  
C. Flynn ◽  
L. K. Berg ◽  
J. Beranek ◽  
...  

Abstract This work is motivated by previous studies of transatlantic transport of Saharan dust and the observed quasi-static nature of coarse mode aerosol with a volume median diameter (VMD) of approximately 3.5 μm. The authors examine coarse mode contributions from transpacific transport of dust to North American aerosol properties using a dataset collected at the high-elevation Storm Peak Laboratory (SPL) and the nearby Atmospheric Radiation Measurement (ARM) Mobile Facility. Collected ground-based data are complemented by quasi-global model simulations and satellite and ground-based observations. The authors identify a major dust event associated mostly with a transpacific plume (about 65% of near-surface aerosol mass) in which the coarse mode with moderate (~3 μm) VMD is distinct and contributes substantially to total aerosol volume (up to 70%) and scattering (up to 40%). The results demonstrate that the identified plume at the SPL site has a considerable fraction of supermicron particles (VMD ~3 μm) and, thus, suggest that these particles have a fairly invariant behavior despite transpacific transport. If confirmed in additional studies, this invariant behavior may simplify considerably parameterizations for size-dependent processes associated with dust transport and removal.


2014 ◽  
Vol 14 (12) ◽  
pp. 6315-6327 ◽  
Author(s):  
Z. Shen ◽  
J. Liu ◽  
L. W. Horowitz ◽  
D. K. Henze ◽  
S. Fan ◽  
...  

Abstract. Long-range transport of black carbon (BC) is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010) and northbound (13 April 2010) measurements in HIPPO-3. While biomass burning in Southeast Asia (SE) contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA) during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC removal as well as transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC over the North Pacific. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging (ignoring uncertainties of other factors controlling BC long range transport) suggest that in order to fit HIPPO-3 observations, the aging timescale of anthropogenic BC from EA may be several hours (faster than assumed in most global models), while the aging process of biomass burning BC from SE may occur much slower, with a timescale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source region. Transpacific transport of BC is sensitive to BC aging when the aging rate is fast; this sensitivity peaks when the aging timescale is in the range of 1–1.5 d. Our findings indicate that BC aging close to the source must be simulated accurately at a process level in order to simulate better the global abundance and climate forcing of BC.


2014 ◽  
Vol 14 (1) ◽  
pp. 505-540 ◽  
Author(s):  
Z. Shen ◽  
J. Liu ◽  
L. W. Horowitz ◽  
D. K. Henze ◽  
S. Fan ◽  
...  

Abstract. Long-range transport of black carbon (BC) is a growing concern as a result of the efficiency of BC in warming the climate and its adverse impact on human health. We study transpacific transport of BC during HIPPO-3 using a combination of inverse modeling and sensitivity analysis. We use the GEOS-Chem chemical transport model and its adjoint to constrain Asian BC emissions and estimate the source of BC over the North Pacific. We find that different sources of BC dominate the transport to the North Pacific during the southbound (29 March 2010) and northbound (13 April 2010) measurements in HIPPO-3. While biomass burning in Southeast Asia (SE) contributes about 60% of BC in March, more than 90% of BC comes from fossil fuel and biofuel combustion in East Asia (EA) during the April mission. GEOS-Chem simulations generally resolve the spatial and temporal variation of BC concentrations over the North Pacific, but are unable to reproduce the low and high tails of the observed BC distribution. We find that the optimized BC emissions derived from inverse modeling fail to improve model simulations significantly. This failure indicates that uncertainties in BC transport, rather than in emissions, account for the major biases in GEOS-Chem simulations of BC. The aging process, transforming BC from hydrophobic into hydrophilic form, is one of the key factors controlling wet scavenging and remote concentrations of BC. Sensitivity tests on BC aging suggest that the aging time scale of anthropogenic BC from EA is several hours, faster than assumed in most global models, while the aging process of biomass burning BC from SE may occur much slower, with a time scale of a few days. To evaluate the effects of BC aging and wet deposition on transpacific transport of BC, we develop an idealized model of BC transport. We find that the mid-latitude air masses sampled during HIPPO-3 may have experienced a series of precipitation events, particularly near the EA and SE source region. Transpacific transport of BC is sensitive to BC aging when the aging rate is fast; this sensitivity peaks when the aging time scale is in the range of 1–1.5 d. Our findings indicate that BC aging close to the source must be simulated accurately at a process level in order to simulate better the global abundance and climate forcing of BC.


2013 ◽  
Vol 13 (21) ◽  
pp. 10807-10825 ◽  
Author(s):  
H. Lei ◽  
X.-Z. Liang ◽  
D. J. Wuebbles ◽  
Z. Tao

Abstract. Atmospheric mercury is a toxic air and water pollutant that is of significant concern because of its effects on human health and ecosystems. A mechanistic representation of the atmospheric mercury cycle is developed for the state-of-the-art global climate-chemistry model, CAM-Chem (Community Atmospheric Model with Chemistry). The model simulates the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three forms: elemental mercury (Hg(0)), reactive mercury (Hg(II)), and particulate mercury (PHg). Emissions of mercury include those from human, land, ocean, biomass burning and volcano related sources. Land emissions are calculated based on surface solar radiation flux and skin temperature. A simplified air–sea mercury exchange scheme is used to calculate emissions from the oceans. The chemistry mechanism includes the oxidation of Hg(0) in gaseous phase by ozone with temperature dependence, OH, H2O2 and chlorine. Aqueous chemistry includes both oxidation and reduction of Hg(0). Transport and deposition of mercury species are calculated through adapting the original formulations in CAM-Chem. The CAM-Chem model with mercury is driven by present meteorology to simulate the present mercury air quality during the 1999–2001 period. The resulting surface concentrations of total gaseous mercury (TGM) are then compared with the observations from worldwide sites. Simulated wet depositions of mercury over the continental United States are compared to the observations from 26 Mercury Deposition Network stations to test the wet deposition simulations. The evaluations of gaseous concentrations and wet deposition confirm a strong capability for the CAM-Chem mercury mechanism to simulate the atmospheric mercury cycle. The general reproduction of global TGM concentrations and the overestimation on South Africa indicate that model simulations of TGM are seriously affected by emissions. The comparison to wet deposition indicates that wet deposition patterns of mercury are more affected by the spatial variability of precipitation. The sensitivity experiments show that 22% of total mercury deposition and 25% of TGM concentrations in the United States result from domestic anthropogenic sources, but only 9% of total mercury deposition and 7% of TGM concentrations are contributed by transpacific transport. However, the contributions of domestic and transpacific sources on the western United States levels of mercury are of comparable magnitude.


2013 ◽  
Vol 13 (4) ◽  
pp. 9849-9893 ◽  
Author(s):  
H. Lei ◽  
X.-Z. Liang ◽  
D. J. Wuebbles ◽  
Z. Tao

Abstract. Atmospheric mercury is a toxic air and water pollutant that is of significant concern because of its effects on human health and ecosystems. A mechanistic representation of the atmospheric mercury cycle is developed for the state-of-the-art global climate-chemistry model, CAM-Chem (Community Atmospheric Model with Chemistry). The model simulates the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three forms: elemental mercury (Hg(0)), reactive mercury (Hg(II)), and particulate mercury (PHg). Emissions of mercury include those from human, land, ocean, biomass burning and volcano related sources. Land emissions are calculated based on surface solar radiation flux and skin temperature. A simplified air–sea mercury exchange scheme is used to calculate emissions from the oceans. The chemistry mechanism includes the oxidation of Hg(0) in gaseous phase by ozone with temperature dependence, OH, H2O2 and chlorine. Aqueous chemistry includes both oxidation and reduction of Hg(0). Transport and deposition of mercury species are calculated through adapting the original formulations in CAM-Chem. The CAM-Chem model with mercury is driven by present meteorology to simulate the present mercury air quality during the 1999–2001 periods. The resulting surface concentrations of total gaseous mercury (TGM) are then compared with the observations from worldwide sites. Simulated wet depositions of mercury over the continental United States are compared to the observations from 26 Mercury Deposition Network stations to test the wet deposition simulations. The evaluations of gaseous concentrations and wet deposition confirm a strong capability for the CAM-Chem mercury mechanism to simulate the atmospheric mercury cycle. The results also indicate that mercury pollution in East Asia and Southern Africa is very significant with TGM concentrations above 3.0 ng m−3. The comparison to wet deposition indicates that wet deposition patterns of mercury are more affected by the spatial variability of precipitation. The sensitivity experiments show that 22% of total mercury deposition and 25% of TGM concentrations in the United States are resulted from domestic anthropogenic sources, but only 9% of total mercury deposition and 7% of TGM concentrations are contributed by transpacific transport. However, the contributions of domestic and transpacific sources on the western United States levels of mercury are of comparable magnitude.


Author(s):  
Zhaoyan Liu ◽  
T. Duncan Fairlie ◽  
Itsushi Uno ◽  
Jingfeng Huang ◽  
Dong Wu ◽  
...  

2012 ◽  
Vol 117 (D6) ◽  
pp. n/a-n/a ◽  
Author(s):  
N. Christina Hsu ◽  
Can Li ◽  
Nickolay A. Krotkov ◽  
Qing Liang ◽  
Kai Yang ◽  
...  

2011 ◽  
Vol 11 (23) ◽  
pp. 11993-12006 ◽  
Author(s):  
Y. Zhang ◽  
S. Tao ◽  
J. Ma ◽  
S. Simonich

Abstract. A global-scale three dimensional atmospheric transport and chemistry model was applied to simulate transpacific transport of Benzo[a]pyrene (BaP) emitted from Asia. The model results were compared with observations at six monitoring sites. The annual mean and seasonal variation of transport patterns and the contributions of different Asian source regions to transpacific transport flux were investigated. The episodic nature of transpacific transport was also systematically explored. Interannual variability of transpacific transport of BaP was also assessed during the period of 1948–2007. Results showed that strong enhancements of modeled BaP occurred in an area bounded by 70–80° E and 100–120° E. Air containing these elevated BaP concentrations was then delivered eastward by westerly winds. When approaching the West Coast of North America, the descending atmospheric motion carried BaP-laden air into the lower atmosphere. The transpacific transport flux was 1.6 times higher in the winter than in the summer. East Asian emission dominates the transpacific transport flux with a contribution of about 97%. Near ground concentration of BaP induced by Asian sources in North America varied between 1–20 pg m−3. A case study for observation at Cheeka Peak Observatory during March 2002–May 2002 reveals the importance of warm conveyor belt for transpacific transport. The number of days with transpacific transport flux with a factor of 0.5, 1.0, 1.5, and 2.0 larger than the running mean were 9.4%, 0.72%, 0.06% and 0.01%, respectively, implying a mild contribution of episodic transport to the long-term mean transport flux. Significant interannual fluctuation of transpacific transport of BaP was found, including a general decreasing trend during 1948–2007, and especially after the 1970s. The transpacific transport was found to be positively correlated with the Southern Oscillation Index.


2011 ◽  
Vol 11 (7) ◽  
pp. 18979-19009 ◽  
Author(s):  
Y. Zhang ◽  
S. Tao ◽  
J. Ma ◽  
S. Simonich

Abstract. A global-scale three dimensional atmospheric transport and chemistry model was applied to simulate transpacific transport of Benzo[a]pyrene (BaP) emitted from Asia. The model results were compared with observations at six monitoring sites. The annual mean and seasonal variation of transport patterns and the contributions of different Asian source regions to transpacific transport flux were investigated. The episodic nature of transpacific transport was also systematically explored. Interannual variability of transpacific transport of BaP was also assessed during the period of 1948–2007. Results showed that strong enhancements of modeled BaP concentrations at 3000 m occurred in an area bounded by 70–80° E and 100–120° E. Air containing these elevated BaP concentrations was then delivered eastward by westerly winds. When approaching the West Coast of North America, the descending atmospheric motion carried BaP-laden air into the lower atmosphere. The transpacific transport flux was 1.6 times higher in the winter than in the summer. East Asian emission dominates the transpacific transport flux with a contribution of about 97 %. Near ground concentration of BaP induced by Asian sources in North America varied between 1–20 pg m−3. The number of days with transpacific transport flux with a factor of 0.5, 1.0, 1.5, and 2.0 larger than the running mean were 9.4 %, 0.72 %, 0.06 % and 0.01 %, respectively, implying a mild contribution of episodic transport to the long-term mean transport flux. Significant interannual fluctuation of transpacific transport of BaP was found, including a general decreasing trend during 1948–2007, and especially after the 1970s. The transpacific transport was found to be positively correlated with the Southern Oscillation Index.


2009 ◽  
Vol 9 (19) ◽  
pp. 7257-7287 ◽  
Author(s):  
E. J. Dunlea ◽  
P. F. DeCarlo ◽  
A. C. Aiken ◽  
J. R. Kimmel ◽  
R. E. Peltier ◽  
...  

Abstract. Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of organic aerosol mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary organic aerosol formation in the free troposphere.


Sign in / Sign up

Export Citation Format

Share Document