scholarly journals Robust Adaptive Neural Cooperative Control for the USV-UAV Based on the LVS-LVA Guidance Principle

2022 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Jiqiang Li ◽  
Guoqing Zhang ◽  
Bo Li

Around the cooperative path-following control for the underactuated surface vessel (USV) and the unmanned aerial vehicle (UAV), a logic virtual ship-logic virtual aircraft (LVS-LVA) guidance principle is developed to generate the reference heading signals for the USV-UAV system by using the “virtual ship” and the “virtual aircraft”, which is critical to establish an effective correlation between the USV and the UAV. Taking the steerable variables (the main engine speed and the rudder angle of the USV, and the rotor angular velocities of the UAV) as the control input, a robust adaptive neural cooperative control algorithm was designed by employing the dynamic surface control (DSC), radial basic function neural networks (RBF-NNs) and the event-triggered technique. In the proposed algorithm, the reference roll angle and pitch angle for the UAV can be calculated from the position control loop by virtue of the nonlinear decouple technique. In addition, the system uncertainties were approximated through the RBF-NNs and the transmission burden from the controller to the actuators was reduced for merits of the event-triggered technique. Thus, the derived control law is superior in terms of the concise form, low transmission burden and robustness. Furthermore, the tracking errors of the USV-UAV cooperative control system can converge to a small compact set through adjusting the designed control parameters appropriately, and it can be also guaranteed that all the signals are the semi-global uniformly ultimately bounded (SGUUB). Finally, the effectiveness of the proposed algorithm has been verified via numerical simulations in the presence of the time-varying disturbances.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 96672-96685 ◽  
Author(s):  
Yang Zhou ◽  
Wenhan Dong ◽  
Shuangyu Dong ◽  
Yong Chen ◽  
Renwei Zuo ◽  
...  

2019 ◽  
Vol 72 (06) ◽  
pp. 1378-1398 ◽  
Author(s):  
Guoqing Zhang ◽  
Jiqiang Li ◽  
Bo Li ◽  
Xianku Zhang

This paper introduces a scheme for waypoint-based path-following control for an Unmanned Robot Sailboat (URS) in the presence of actuator gain uncertainty and unknown environment disturbances. The proposed scheme has two components: intelligent guidance and an adaptive neural controller. Considering upwind and downwind navigation, an improved version of the integral Line-Of-Sight (LOS) guidance principle is developed to generate the appropriate heading reference for a URS. Associated with the integral LOS guidance law, a robust adaptive algorithm is proposed for a URS using Radial Basic Function Neural Networks (RBF-NNs) and a robust neural damping technique. In order to achieve a robust neural damping technique, one single adaptive parameter must be updated online to stabilise the effect of the gain uncertainty and the external disturbance. To ensure Semi-Global Uniform Ultimate Bounded (SGUUB) stability, the Lyapunov theory has been employed. Two simulated experiments have been conducted to illustrate that the control effects can achieve a satisfactory performance.


2018 ◽  
Vol 38 (3) ◽  
pp. 268-278
Author(s):  
Maolong Lv ◽  
Xiuxia Sun ◽  
G. Z. Xu ◽  
Z. T. Wang

For the ultralow altitude airdrop decline stage, many factors such as actuator nonlinearity, the uncertain atmospheric disturbances, and model unknown nonlinearity affect the precision of trajectory tracking. A robust adaptive neural network dynamic surface control method is proposed. The neural network is used to approximate unknown nonlinear continuous functions of the model, and a nonlinear robust term is introduced to eliminate the actuator’s nonlinear modeling error and external disturbances. From Lyapunov stability theorem, it is rigorously proved that all the signals in the closed-loop system are bounded. Simulation results confirm the perfect tracking performance and strong robustness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document