inka cells
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivana Daubnerová ◽  
Ladislav Roller ◽  
Honoo Satake ◽  
Chen Zhang ◽  
Young-Joon Kim ◽  
...  

AbstractInsect ecdysis triggering hormones (ETHs) released from endocrine Inka cells act on specific neurons in the central nervous system (CNS) to activate the ecdysis sequence. These primary target neurons express distinct splicing variants of ETH receptor (ETHR-A or ETHR-B). Here, we characterized both ETHR subtypes in the moth Bombyx mori in vitro and mapped spatial and temporal distribution of their expression within the CNS and peripheral organs. In the CNS, we detected non-overlapping expression patterns of each receptor isoform which showed dramatic changes during metamorphosis. Most ETHR-A and a few ETHR-B neurons produce multiple neuropeptides which are downstream signals for the initiation or termination of various phases during the ecdysis sequence. We also described novel roles of different neuropeptides during these processes. Careful examination of peripheral organs revealed ETHRs expression in specific cells of the frontal ganglion (FG), corpora allata (CA), H-organ and Malpighian tubules prior to each ecdysis. These data indicate that PETH and ETH are multifunctional hormones that act via ETHR-A and ETHR-B to control various functions during the entire development—the ecdysis sequence and associated behaviors by the CNS and FG, JH synthesis by the CA, and possible activity of the H-organ and Malpighian tubules.


2021 ◽  
Author(s):  
Ivana Daubnerová ◽  
Ladislav Roller ◽  
Honoo Satake ◽  
Chen Zhang ◽  
Young-Joon Kim ◽  
...  

Abstract Insect ecdysis triggering hormones (ETHs) released from endocrine Inka cells act on specific neurons in the central nervous system (CNS) to activate the ecdysis sequence. These primary target neurons express distinct splicing variants of ETH receptor (ETHR-A or ETHR-B). Here, we characterized both ETHR subtypes in the moth Bombyx mori in vitro and mapped spatial and temporal distribution of their expression within the CNS and peripheral organs. In the CNS, we detected non-overlapping expression patterns of each receptor isoform which showed dramatic changes during metamorphosis. Most ETHR-A and a few ETHR-B neurons produce multiple neuropeptides which are downstream signals for the initiation or termination of various phases during the ecdysis sequence. We also described novel roles of different neuropeptides during these processes. Careful examination of peripheral organs revealed ETHRs expression in specific cells of the frontal ganglion (FG), corpora allata (CA), H-organ and Malpighian tubules prior to each ecdysis. These data indicate that PETH and ETH are multifunctional hormones that act via ETHR-A and ETHR-B to control various functions during the entire development - the ecdysis sequence and associated behaviors by the CNS and FG, JH synthesis by the CA, and possible activity of the H-organ and Malpighian tubules.


2017 ◽  
Vol 114 (19) ◽  
pp. E3849-E3858 ◽  
Author(s):  
Matthew Meiselman ◽  
Sang Soo Lee ◽  
Raymond-Tan Tran ◽  
Hongjiu Dai ◽  
Yike Ding ◽  
...  

Ecdysis-triggering hormone (ETH) was originally discovered and characterized as a molt termination signal in insects through its regulation of the ecdysis sequence. Here we report that ETH persists in adult Drosophila melanogaster, where it functions as an obligatory allatotropin to promote juvenile hormone (JH) production and reproduction. ETH signaling deficits lead to sharply reduced JH levels and consequent reductions of ovary size, egg production, and yolk deposition in mature oocytes. Expression of ETH and ETH receptor genes is in turn dependent on ecdysone (20E). Furthermore, 20E receptor knockdown specifically in Inka cells reduces fecundity. Our findings indicate that the canonical developmental roles of 20E, ETH, and JH during juvenile stages are repurposed to function as an endocrine network essential for reproductive success.


2009 ◽  
Vol 106 (32) ◽  
pp. 13371-13376 ◽  
Author(s):  
J.-C. Chang ◽  
R.-B. Yang ◽  
M. E. Adams ◽  
K.-H. Lu

2003 ◽  
Vol 206 (8) ◽  
pp. 1263-1263 ◽  
Author(s):  
K. Phillips
Keyword(s):  

2002 ◽  
Vol 205 (22) ◽  
pp. 3459-3473 ◽  
Author(s):  
Dušan Žitňan ◽  
Laura Hollar ◽  
Ivana Spalovská ◽  
Peter Takáč ◽  
Inka Žitňanová ◽  
...  

SUMMARYInka cells of the epitracheal endocrine system produce peptide hormones involved in the regulation of insect ecdysis. In the silkworm Bombyx mori, injection of Inka cell extract into pharate larvae, pupae or adults activates the ecdysis behavioural sequence. In the present study, we report the identification of three peptides in these extracts, pre-ecdysis-triggering hormone (PETH), ecdysis-triggering hormone (ETH) and ETH-associated peptide(ETH-AP), which are encoded by the same cDNA precursor. Strong immunoreactivity associated with each peptide in Inka cells prior to ecdysis disappears during each ecdysis, indicating complete release of these peptides. Injection of either PETH or ETH alone is sufficient to elicit the entire ecdysis behavioural sequence through the direct action on abdominal ganglia;cephalic and thoracic ganglia are not required for the transition from pre-ecdysis to ecdysis behaviour. Our in vitro data provide evidence that these peptides control the entire ecdysis behavioural sequence through activation of specific circuits in the nervous system. Ecdysis of intact larvae is associated with the central release of eclosion hormone (EH) and elevation of cyclic 3′,5′-guanosine monophosphate (cGMP) in the ventral nerve cord. However, injection of ETH into isolated abdomens induces cGMP elevation and ecdysis behaviour without a detectable release of EH,suggesting that an additional central factor(s) may be involved in the activation of this process. Our findings provide the first detailed account of the natural and hormonally induced behavioural sequence preceding larval,pupal and adult ecdyses of B. mori and highlight significant differences in the neuro-endocrine activation of pre-ecdysis and ecdysis behaviours compared with the related moth, Manduca sexta.


2001 ◽  
Vol 204 (20) ◽  
pp. 3483-3495 ◽  
Author(s):  
Inka Žitňanová ◽  
Michael E. Adams ◽  
Dušan Žitňan

SUMMARY Initiation of the ecdysis behavioural sequence in insects requires activation of the central nervous system (CNS) by pre-ecdysis-triggering hormone (PETH) and ecdysis-triggering hormone (ETH), which are released from the Inka cells of the epitracheal glands. Here, we show that the developmental events preceding larval and pupal ecdysis of Manduca sexta involve a dual action of ecdysteroids on the epitracheal glands and CNS. The low steroid levels in freshly ecdysed and feeding larvae are associated with small-sized epitracheal glands, reduced peptide production in Inka cells and insensitivity of the CNS to ETH. The elevated ecdysteroid levels before each ecdysis lead to a dramatic enlargement of Inka cells and increased production of peptide hormones and their precursors. As blood ecdysteroids reach peak levels, the CNS becomes responsive to Inka cell peptides. These effects of natural ecdysteroid pulses can be experimentally induced by injection of 20-hydroxyecdysone or the ecdysteroid agonist tebufenozide (RH-5992) into ecdysed larvae, thus stimulating peptide production in Inka cells and inducing CNS sensitivity to ETH. A direct steroid action on the CNS is demonstrated by subsequent treatment of isolated nerve cords from ecdysed larvae with 20-hydroxyecdysone and ETH, which results in pre-ecdysis or ecdysis bursts. Our data show that ecdysteroid-induced transcriptional activity in both the epitracheal glands and the CNS are necessary events for the initiation of the ecdysis behavioural sequence.


2000 ◽  
Vol 203 (19) ◽  
pp. 3011-3018 ◽  
Author(s):  
T.G. Kingan ◽  
M.E. Adams

Ecdysis, or molting behavior, in insects requires the sequential action of high levels of ecdysteroids, which induce accumulation of ecdysis-triggering hormone (ETH) in Inka cells, followed by low levels of ecdysteroids, permissive for the onset of the behavior. Here, we show that high ecdysteroid levels suppress the onset of the behavioral sequence by inhibiting the development of competence to secrete ETH. In pharate pupae of Manduca sexta, Inka cells in the epitracheal glands normally develop competence to secrete ETH in response to eclosion hormone (EH) 8 h before pupation. Injection of 20-hydroxyecdysone (20E) into precompetent insects prevents this acquisition of competence, but does not affect EH-evoked accumulation of the second messenger cyclic GMP. Precompetent glands acquire competence in vitro after overnight culture, and this can be prevented by the inclusion of 20E at concentrations greater than 0.1 microg ml(−1)in the culture medium. Actinomycin D completely inhibits the acquisition of competence, demonstrating that it is dependent on transcriptional events. Cultured epitracheal glands become refractory to the inhibitory effects of 20E in the acquisition of competence at least 3 h earlier than for Actinomycin D, indicating that 20E acts on an early step in a sequence of nuclear events leading to transcription of a structural gene. Our findings suggest that declining ecdysteroid levels permit a late event in transcription, the product of which is downstream of EH receptor activation and cyclic GMP accumulation in the cascade leading to ETH secretion.


2000 ◽  
Vol 203 (8) ◽  
pp. 1329-1340 ◽  
Author(s):  
D. Zitnan ◽  
M.E. Adams

Insects shed their old cuticle by performing the ecdysis behavioural sequence. To activate each subunit of this set of programmed behaviours in Manduca sexta, specific central ganglia are targeted by pre-ecdysis-triggering (PETH) and ecdysis-triggering (ETH) hormones secreted from Inka cells. PETH and ETH act on each abdominal ganglion to initiate, within a few minutes, pre-ecdysis I and II, respectively. Shortly thereafter, ETH targets the tritocerebrum and suboesophageal ganglion to activate the ecdysis neural network in abdominal ganglia through the elevation of cyclic GMP (cGMP) levels. However, the onset of ecdysis behaviour is delayed by inhibitory factor(s) from the cephalic and thoracic ganglia. The switch from pre-ecdysis to ecdysis is controlled by an independent clock in each abdominal ganglion and is considerably accelerated after removal of the head and thorax. Eclosion hormone (EH) appears to be one of the central signals inducing elevation of cGMP levels and ecdysis, but these actions are quite variable and usually restricted to anterior ganglia. EH treatment of desheathed ganglia also elicits strong production of cGMP in intact ganglia, suggesting that this induction occurs via the release of additional downstream factors. Our data suggest that the initiation of pre-ecdysis and the transition to ecdysis are regulated by stimulatory and inhibitory factors released within the central nervous system after the initial actions of PETH and ETH.


1998 ◽  
Vol 201 (2) ◽  
pp. 193-209 ◽  
Author(s):  
M A O'Brien ◽  
P H Taghert

We identified of a set of neuropeptide-expressing cells sited along the respiratory system of Drosophila melanogaster using an antibody to the molluscan neuropeptide myomodulin. The number and positions of these 'peritracheal' myomodulin (PM) cells were reminiscent of the epitracheal Inka cells in the moth Manduca sexta. These Inka cells release the peptide ecdysis-triggering hormone, which helps elicit ecdysial behavior at the molt, and we show that they are also recognized by the myomodulin (MM) antibody. In both D. melanogaster and M. sexta, the PM and Inka cells are the only MM-positive cells outside the central nervous system. In both insects, MM immunoreactivity disappears at the end of the molt. In D. melanogaster, we have monitored the PM cells throughout development using two enhancer trap lines; the PM cells persist throughout development, but at larval, pupal and adult ecdyses, they display a loss of MM immunoreactivity. This transient loss occurs at a predictable time, just prior to ecdysis. In contrast, MM-positive neurons in the central nervous system do not show these changes. The PM cells also reveal a concomitant loss of immunostaining for an enzyme contained in secretory granules. The results are consistent with the hypothesis that the PM cells release MM-like peptides just prior to each ecdysis. In addition, we demonstrate that peritracheal cells of five widely divergent insect orders show a myomodulin phenotype. The peritracheal cell size, morphology, numbers and distribution vary in these different orders. These data suggest that peritracheal cells release MM-like peptides as part of a conserved feature of the endocrine regulation of insect ecdysis.


Sign in / Sign up

Export Citation Format

Share Document