atomic sodium
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 4)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Julia Koch ◽  
Adam Bourassa ◽  
Chris Roth ◽  
Nicholas Lloyd ◽  
Titus Yuan ◽  
...  

<p>Using a combination of different measurement techniques is important to understand the numerous processes happening in the MLT-region. One of those processes is the excitation of atomic sodium by reaction with ozone which leads to emission of electromagnetic radiation: a phenomenon called Airglow. Although the sodium excitation mechanism was already proposed in 1939 by Sidney Chapman and further investigation was done by a great number of scientists, there are still some key parameters that are not well-known today. One of those parameters is the branching ratio f<sub>A</sub> which determines the amount of sodium in the excited state. Exact knowledge of this value would offer the opportunity to use Na-nightglow measurements to determine sodium profiles in the MLT-region. In this study we used both, satellite measurements and ground-based Lidar measurements to help approach a more reliable branching ratio f<sub>A</sub>. By comparing measurements that were made by the two instruments OSIRIS on Odin (Satellite) and the Lidar of the Colorado State University (ground-based) we found a branching ratio f<sub>A</sub> of 0.064 +- 0.028.</p>


2020 ◽  
Author(s):  
Viswanathan Lakshmi Narayanan ◽  
Satanori Nozawa ◽  
Shin-Ichiro Oyama ◽  
Ingrid Mann ◽  
Kazuo Shiokawa ◽  
...  

Abstract. We present a detailed investigation of the formation of a secondary sodium layer at altitudes of 79–85 km below the main sodium layer based on sodium lidar and airglow imager measurements made at Ramfjordmoen near Tromsø, Norway on the night of 19 December 2014. The airglow imager observations of OH emission revealed four passing frontal systems that resembled mesospheric bores which typically occur in ducting regions of the upper mesosphere. For about 1.5 hours, the lower altitude sodium layer had densities similar to that of the main layer with a peak around 90 km. The lower altitude sodium layer weakened and disappeared soon after the fourth front had passed. The fourth front had weakened in intensity by the time it approached the region of lidar beams and disappeared soon afterwards. The column integrated sodium densities increased gradually during formation of the lower altitude sodium layer. Temperatures measured with the lidar indicate that there was a strong thermal duct structure between 87 and 93 km. Furthermore, the temperature was enhanced below 85 km. Horizontal wind magnitudes estimated from the lidar showed strong wind shears above 93 km. We conclude that the combination of an enhanced stability region due to the temperature profile and intense wind shears have provided ideal conditions for evolution of multiple mesospheric bores revealed as frontal systems in OH images. The downward motion associated with the fronts appeared to have brought air rich in H and O from higher altitudes into the region below 85 km wherein the temperatures were also relatively high. This would have liberated sodium atoms from the reservoir species and suppressed the re-conversion of atomic sodium into reservoir species so that the lower altitude sodium layer could form and the column abundance could increase. The presented observations also reveal the importance of mesospheric frontal systems in bringing about significant variation of minor species over shorter temporal intervals.


2020 ◽  
Vol 637 ◽  
pp. A76 ◽  
Author(s):  
C. von Essen ◽  
M. Mallonn ◽  
S. Hermansen ◽  
M. C. Nixon ◽  
N. Madhusudhan ◽  
...  

We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, two with a wavelength coverage between 2900 and 5700 Å, and the third one between 5250 and 10 300 Å. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Å. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76’s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9σ significance. In this case, the retrieved temperature at the top of the atmosphere (10−5 bar) is 2300−392+412 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.


2019 ◽  
Vol 45 (7) ◽  
pp. 715-720 ◽  
Author(s):  
P. de Pujo ◽  
M. Ryan ◽  
C. Crépin ◽  
J.-M. Mestdagh ◽  
J. G. McCaffrey

2018 ◽  
Vol 616 ◽  
pp. A151 ◽  
Author(s):  
N. Casasayas-Barris ◽  
E. Pallé ◽  
F. Yan ◽  
G. Chen ◽  
S. Albrecht ◽  
...  

We used the HARPS-North high resolution spectrograph (ℛ = 115 000) at Telescopio Nazionale Galileo (TNG) to observe one transit of the highly irradiated planet MASCARA-2b/KELT-20b. Using only one transit observation, we are able to clearly resolve the spectral features of the atomic sodium (Na I) doublet and the Hα line in its atmosphere, which are corroborated with the transmission calculated from their respective transmission light curves (TLC). In particular, we resolve two spectral features centered on the Na I doublet position with an averaged absorption depth of 0.17 ± 0.03% for a 0.75 Å bandwidth with line contrasts of 0.44 ± 0.11% (D2) and 0.37 ± 0.08% (D1). The Na I TLC have also been computed, showing a large Rossiter-McLaughlin (RM) effect, which has a 0.20 ± 0.05% Na I transit absorption for a 0.75 Å passband that is consistent with the absorption depth value measured from the final transmission spectrum. We observe a second feature centered on the Hα line with 0.6 ± 0.1% contrast and an absorption depth of 0.59 ± 0.08% for a 0.75 Å passband that has consistent absorptions in its TLC, which corresponds to an effective radius of Rλ/RP = 1.20 ± 0.04. While the signal-to-noise ratio (S/N) of the final transmission spectrum is not sufficient to adjust different temperature profiles to the lines, we find that higher temperatures than the equilibrium (Teq = 2260 ± 50 K) are needed to explain the lines contrast. Particularly, we find that the Na I lines core require a temperature of T = 4210 ± 180 K and that Hα requires a temperature of T = 4330 ± 520 K. MASCARA-2b, like other planets orbiting A-type stars, receives a large amount of UV energy from its host star. This energy excites the atomic hydrogen and produces Hα absorption, leading to the expansion and abrasion of the atmosphere. The study of other Balmer lines in the transmission spectrum would allow the determination of the atmospheric temperature profile and the calculation of the lifetime of the atmosphere with escape rate measurements. In the case of MASCARA-2b, residual features are observed in the Hβ and Hγ lines, but they are not statistically significant. More transit observations are needed to confirm our findings in Na I and Hα and to build up enough S/N to explore the presence of Hβ and Hγ planetary absorptions.


2018 ◽  
Vol 96 (3) ◽  
pp. 307-311
Author(s):  
HongBin Wang ◽  
Gang Jiang ◽  
Xiang Fu Li

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Bernd Docters ◽  
Jörg Wrachtrup ◽  
Ilja Gerhardt
Keyword(s):  

Author(s):  
Kaidi Wan ◽  
Zhihua Wang ◽  
Luc Vervisch ◽  
Jun Xia ◽  
Yingzu Liu ◽  
...  

This paper proposed an approach to modeling alkali metal reacting dynamics in turbulent pulverized-coal combustion (PCC) using tabulated sodium chemistry. With tabulation, detailed sodium chemistry can be incorporated in large-eddy simulation (LES), but the expenses of solving stiff Arrhenius equations can be avoided. The sodium release rate from a pulverized-coal particle is assumed to be proportional to the pyrolysis rate, as a simplification. The chemical forms of released sodium is assumed to be atomic sodium Na, because atomic sodium is predicted to be the favoured species in a flame environment. A detailed sodium chemistry mechanism including 5 sodium species, i.e., Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions is tabulated. The sodium chemistry table contains four coordinates, i.e., the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and the progress variable. Apart from the reactions of sodium species, hydrocarbon volatile combustion has been modeled by a partially stirred reactor concept. Since the magnitude of sodium species is very small, i.e., at the ppm level, and the reactions of sodium species are slower than volatile combustion, one-way coupling is used for the interaction between the sodium reactions and volatile combustion, i.e., the former having no influence on the latter. A verification study has been performed to compare the predictions on sodium species evolutions in zero-dimensional simulations using the chemistry table against directly using the detailed sodium mechanism under various initial conditions, and their agreement is always good. The PCC-LES solver used in the present study is validated on a pulverized-coal jet flame ignited by a preheated gas flow. Good agreements between the experimental measurements and the LES results have been achieved on gas temperature, coal burnout and lift-off height. Finally, the sodium chemistry table is incorporated into the LES solver to model sodium reacting dynamics in turbulent pulverized-coal combustion. Properties of Loy Yang brown coal, for which sodium data are available, are used. Characteristics of the reacting dynamics of the 5 sodium species in a pulverized-coal jet flame are then obtained. The results show that Na and NaOH are the two major sodium species in the pulverized-coal jet flame. Na, the atomic sodium, has a high concentration in fuel-rich regions; while the highest NaOH concentration is found in regions close to the stoichiometric condition. It should be pointed out that the proposed chemistry tabulation approach can be extended to modeling potassium reacting dynamics in turbulent multiphase biomass combustion. (CSPE)


2017 ◽  
Vol 176 ◽  
pp. 429-438 ◽  
Author(s):  
Zhihua Wang ◽  
Yingzu Liu ◽  
Ronald Whiddon ◽  
Kaidi Wan ◽  
Yong He ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document