uncompensable heat stress
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 2)

H-INDEX

14
(FIVE YEARS 1)

2020 ◽  
Vol 318 (5) ◽  
pp. R950-R960 ◽  
Author(s):  
Zachary J. Schlader ◽  
Blair D. Johnson ◽  
Riana R. Pryor ◽  
Jocelyn Stooks ◽  
Brian M. Clemency ◽  
...  

Military and civilian emergency situations often involve prolonged exposures to warm and very humid environments. We tested the hypothesis that increases in core temperature and body fluid losses during prolonged exposure to warm and very humid environments are dependent on dry bulb temperature. On three occasions, 15 healthy males (23 ± 3 yr) sat in 32.1 ± 0.1°C, 33.1 ± 0.2°C, or 35.0 ± 0.1°C and 95 ± 2% relative humidity normobaric environments for 8 h. Core temperature (telemetry pill) and percent change in body weight, an index of changes in total body water occurring secondary to sweat loss, were measured every hour. Linear regression models were fit to core temperature (over the final 4 h) and percent changes in body weight (over the entire 8 h) for each subject. These equations were used to predict core temperature and percent changes in body weight for up to 24 h. At the end of the 8-h exposure, core temperature was higher in 35°C (38.2 ± 0.4°C, P < 0.01) compared with 32°C (37.2 ± 0.2°C) and 33°C (37.5 ± 0.2°C). At this time, percent changes in body weight were greater in 35°C (−1.9 ± 0.5%) compared with 32°C (−1.4 ± 0.3%, P < 0.01) but not 33°C (−1.6 ± 0.6%, P = 0.17). At 24 h, predicted core temperature was higher in 35°C (39.2 ± 1.4°C, P < 0.01) compared with 32°C (37.6 ± 0.9°C) and 33°C (37.5 ± 0.9°C), and predicted percent changes in body weight were greater in 35°C (−6.1 ± 2.4%) compared with 32°C (−4.6 ± 1.5%, P = 0.04) but not 33°C (−5.3 ± 2.0%, P = 0.43). Prolonged exposure to 35°C, but not 32°C or 33°C, dry bulb temperatures and high humidity is uncompensable heat stress, which exacerbates body fluid losses.


2019 ◽  
Vol 127 (4) ◽  
pp. 1095-1106 ◽  
Author(s):  
Nicholas Ravanelli ◽  
Geoff Coombs ◽  
Pascal Imbeault ◽  
Ollie Jay

This study assessed whether, notwithstanding lower resting absolute core temperatures, alterations in time-dependent changes in thermoregulatory responses following partial and complete heat acclimation (HA) are only evident during uncompensable heat stress. Eight untrained individuals underwent 8 wk of aerobic training (i.e., partial HA) followed by 6 days of HA in 38°C/65% relative humidity (RH) (i.e., complete HA). On separate days, esophageal temperature (Tes), arm (LSRarm), and back (LSRback) sweat rate, and whole body sweat rate (WBSR) were measured during a 45-min compensable (37°C/30% RH) and 60-min uncompensable (37°C/60% RH) heat stress trial pre-training (PRE-TRN), post-training (POST-TRN), and post–heat acclimation (POST-HA). For compensable heat stress trials, resting Tes was lower POST-TRN (36.74 ± 0.27°C, P = 0.05) and POST-HA (36.60 ± 0.27°C, P = 0.001) compared with PRE-TRN (36.99 ± 0.19°C); however, ΔTes was similar in all trials (PRE-TRN:0.40 ± 0.23°C; POST-TRN:0.42 ± 0.20°C; POST-HA:0.43 ± 0.12°C, P = 0.97). While LSRback was unaltered by HA ( P = 0.94), end-exercise LSRarm was higher POST-TRN (0.70 ± 0.14 mg·cm−2·min−1, P < 0.001) and POST-HA (0.75 ± 0.16 mg·cm−2·min−1, P < 0.001) compared with PRE-TRN (0.61 ± 0.15 mg·cm−2·min−1). Despite matched evaporative heat balance requirements, steady-state WBSR (31st–45th min) was greater POST-TRN (12.7 ± 1.0 g/min, P = 0.02) and POST-HA (12.9 ± 0.8 g/min, P = 0.004), compared with PRE-TRN (11.7 ± 0.9 g/min). For uncompensable heat stress trials, resting Tes was lower POST-TRN (36.77 ± 0.22°C, P = 0.05) and POST-HA (36.62 ± 0.15°C, P = 0.03) compared with PRE-TRN (36.86 ± 0.24°C). But ΔTes was smaller POST-TRN (0.77 ± 0.19°C, P = 0.05) and POST-HA (0.75 ± 0.15°C, P = 0.04) compared with PRE-TRN (1.10 ± 0.32°C). LSRback and LSRarm increased with HA ( P < 0.007), supporting the greater WBSR with HA (POST-TRN:14.4 ± 2.4 g/min, P < 0.001; POST-HA:16.8 ± 2.8 g/min, P < 0.001) compared with PRE-TRN (12.7 ± 3.2 g/min). In conclusion, the thermal benefits of HA are primarily evident when conditions challenge the physiological capacity to dissipate heat. NEW & NOTEWORTHY We demonstrate that neither partial nor complete heat acclimation alters the change in core temperature during compensable heat stress compared with an unacclimated state, despite a marginally greater whole body sweat rate. However, the greater local and whole body sweat rate with partial and complete heat acclimation reduced the rise in core temperature during 60 min of uncompensable heat stress compared with an unacclimated state, suggesting the improvements in heat dissipation associated with heat acclimation are best observed when the upper physiological limits for evaporative heat loss are challenged.


2018 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Joshua Bautz ◽  
David Hostler ◽  
Priya Khorana ◽  
Joe Suyama

2017 ◽  
Vol 49 (5S) ◽  
pp. 108
Author(s):  
Rebeccah L. Stansbery ◽  
Zachary J. Schlader ◽  
Jennifer L. Temple ◽  
Lindsey N. Russo ◽  
David Hostler

2017 ◽  
Vol 49 (5S) ◽  
pp. 451
Author(s):  
Nicholas Ravanelli ◽  
Geoff Coombs ◽  
Samuel Duchesne-Belanger ◽  
Pascal Imbeault ◽  
Ollie Jay

2015 ◽  
Vol 20 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Joe Suyama ◽  
Serina J. McEntire ◽  
Jon C. Rittenberger ◽  
Deena Rosalky ◽  
Steven E. Reis ◽  
...  

2015 ◽  
Vol 40 (8) ◽  
pp. 811-816 ◽  
Author(s):  
Phillip J. Wallace ◽  
Anaïs T. Masbou ◽  
Stewart R. Petersen ◽  
Stephen S. Cheung

This study compared cranial (CC) with passive (CON) cooling during recovery on tolerance to subsequent exercise while wearing firefighting protective ensemble and self-contained breathing apparatus in a hot-humid environment. Eleven males (mean ± SD; age, 30.9 ± 9.2 years; peak oxygen consumption, 49.5 ± 5.1 mL·kg−1·min−1) performed 2 × 20 min treadmill walks (5.6 km·h−1, 4% incline) in 35 °C and 60% relative humidity. During a 20-min recovery (rest), participants sat and removed gloves, helmets, and flash hoods but otherwise remained encapsulated. A close-fitting liquid-perfused hood pumped 13 °C water at ∼500 mL·min−1 through the head and neck (CC) or no cooling hood was worn (CON). During rest, neck temperature was lower in CC compared with CON from 4 min (CC: 35.73 ± 3.28 °C, CON: 37.66 ± 1.35 °C, p = 0.025) until the end (CC: 33.06 ± 4.70 °C, CON: 36.85 ± 1.63 °C, p = 0.014). Rectal temperature rose in both CC (0.11 ± 0.19 °C) and CON (0.26 ± 0.15 °C) during rest, with nonsignificant interaction between conditions (p = 0.076). Perceived thermal stress was lower (p = 0.006) from 5 min of CC (median: 3 (quartile 1: 3, quartile 3: 4)) until the end of rest compared with CON (median: 4 (quartile 1: 4, quartile 3: 4)). However, there were no significant differences (p = 0.906) in tolerance times during the second exercise between CC (16.55 ± 1.14 min) and CON (16.60 ± 1.31 min), nor were there any difference in rectal temperature at the start (CC: 38.30 ± 0.40 °C, CON: 38.40 ± 0.16 °C, p = 0.496) or at the end (CC: 38.82 ± 0.23 °C, CON: 39.07 ± 0.22 °C, p = 0.173). With high ambient heat and encapsulation, cranial and neck cooling during recovery decreases physiological strain and perceived thermal stress, but is ineffective in improving subsequent uncompensable heat stress tolerance.


Sign in / Sign up

Export Citation Format

Share Document