neck temperature
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 2)

2019 ◽  
Vol 207 ◽  
pp. 86-89 ◽  
Author(s):  
Valentina Ramirez ◽  
Colleen P. Ryan ◽  
Omar Tonsi Eldakar ◽  
Andrew C. Gallup

Animals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 425 ◽  
Author(s):  
Luiene M. Rocha ◽  
Nicolas Devillers ◽  
Xavier Maldague ◽  
Fidèle Z. Kabemba ◽  
Julien Fleuret ◽  
...  

This study aimed at validating the anatomical sites for the measurement of infrared (IR) body surface temperature as a tool to monitor the pigs’ response to handling and transport stress. The selected anatomical sites were the neck (infrared neck temperature—IRNT), rump (infrared rump temperature—IRRT), orbital (infrared orbital temperature—IROT) and behind ears (infrared behind ears temperature—IRBET) regions. A total of 120 pigs were handled from the finishing pen to the loading dock through a handling test course. Two handling types (gentle vs. rough) and number of laps (1 vs. 3) were applied according to a 2 × 2 factorial design. After loading, pigs were transported for 40 min and returned to their home pens. Animal behavior, heart rate, rectal temperature and salivary cortisol concentration were measured for validation. Increased IR body temperature, heart rate and salivary cortisol levels were observed in response to rough handling and longer distance walk (P < 0.05 for all). The greatest correlations were found between IROT and IRBET temperatures and salivary cortisol concentration at the end of the handling test (r = 0.49 and r = 0.50, respectively; P < 0.001 for both). Therefore, IR pig’s head surface temperature may be useful for a comprehensive assessment of the physiological response to handling and transport stress.


2018 ◽  
Vol 315 (5) ◽  
pp. R925-R933 ◽  
Author(s):  
Nicole T. Vargas ◽  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Rob Gathercole ◽  
Zachary J. Schlader

We tested the hypothesis that mean skin wettedness contributes to thermal behavior to a greater extent than core and mean skin temperatures. In a 27.0 ± 1.0°C environment, 16 young participants (8 females) cycled for 30 min at 281 ± 51 W·m2, followed by 120 min of seated recovery. Mean skin and core temperatures and mean skin wettedness were recorded continuously. Participants maintained a thermally comfortable neck temperature throughout the protocol using a custom-made device. Neck device temperature provided an index of thermal behavior. Linear regression was performed using individual minute data with mean skin wettedness and core and mean skin temperatures as independent variables and neck device temperature as the dependent variable. Standarized β-coefficients were used to determine relative contributions to thermal behavior. Mean skin temperature differed from preexercise (32.6 ± 0.5°C) to 10 min into exercise (32.3 ± 0.6°C, P < 0.01). Core temperature increased from 37.1 ± 0.3°C preexercise to 37.7 ± 0.4°C by end exercise ( P < 0.01) and remained elevated through 30 min of recovery (37.2 ± 0.3°C, P < 0.01). Mean skin wettedness increased from preexercise [0.14 ± 0.03 arbitrary units (AU)] to 20 min into exercise (0.43 ± 0.09 AU, P < 0.01) and remained elevated through 80 min of recovery (0.18 ± 0.06 AU, P ≤ 0.05). Neck device temperature decreased from 26.4 ± 1.6°C preexercise to 18.5 ± 8.7°C 10 min into exercise ( P = 0.03) and remained depressed through 20 min of recovery (14.4 ± 11.2°C, P < 0.01). Mean skin wettedness (52 ± 24%) provided a greater contribution to thermal behavior compared with core (22 ± 22%, P = 0.06) and mean skin (26 ± 16%, P = 0.04) temperatures. Skin wettedness is an important contributing factor to thermal behavior during exercise and recovery.


Author(s):  
Jana Pokorná ◽  
Erik Staffa ◽  
Vladan Bernard ◽  
Vojtěch Mornstein
Keyword(s):  

2015 ◽  
Vol 40 (8) ◽  
pp. 811-816 ◽  
Author(s):  
Phillip J. Wallace ◽  
Anaïs T. Masbou ◽  
Stewart R. Petersen ◽  
Stephen S. Cheung

This study compared cranial (CC) with passive (CON) cooling during recovery on tolerance to subsequent exercise while wearing firefighting protective ensemble and self-contained breathing apparatus in a hot-humid environment. Eleven males (mean ± SD; age, 30.9 ± 9.2 years; peak oxygen consumption, 49.5 ± 5.1 mL·kg−1·min−1) performed 2 × 20 min treadmill walks (5.6 km·h−1, 4% incline) in 35 °C and 60% relative humidity. During a 20-min recovery (rest), participants sat and removed gloves, helmets, and flash hoods but otherwise remained encapsulated. A close-fitting liquid-perfused hood pumped 13 °C water at ∼500 mL·min−1 through the head and neck (CC) or no cooling hood was worn (CON). During rest, neck temperature was lower in CC compared with CON from 4 min (CC: 35.73 ± 3.28 °C, CON: 37.66 ± 1.35 °C, p = 0.025) until the end (CC: 33.06 ± 4.70 °C, CON: 36.85 ± 1.63 °C, p = 0.014). Rectal temperature rose in both CC (0.11 ± 0.19 °C) and CON (0.26 ± 0.15 °C) during rest, with nonsignificant interaction between conditions (p = 0.076). Perceived thermal stress was lower (p = 0.006) from 5 min of CC (median: 3 (quartile 1: 3, quartile 3: 4)) until the end of rest compared with CON (median: 4 (quartile 1: 4, quartile 3: 4)). However, there were no significant differences (p = 0.906) in tolerance times during the second exercise between CC (16.55 ± 1.14 min) and CON (16.60 ± 1.31 min), nor were there any difference in rectal temperature at the start (CC: 38.30 ± 0.40 °C, CON: 38.40 ± 0.16 °C, p = 0.496) or at the end (CC: 38.82 ± 0.23 °C, CON: 39.07 ± 0.22 °C, p = 0.173). With high ambient heat and encapsulation, cranial and neck cooling during recovery decreases physiological strain and perceived thermal stress, but is ineffective in improving subsequent uncompensable heat stress tolerance.


1997 ◽  
Vol 86 (3) ◽  
pp. 603-612 ◽  
Author(s):  
Takehiko Ikeda ◽  
Daniel I. Sessler ◽  
Danielle Marder ◽  
Junyu Xiong

Background Recently, liquid crystal skin-surface thermometers have become popular for intraoperative temperature monitoring. Three situations during which cutaneous liquid-crystal thermometry may poorly estimate core temperature were monitored: (1) anesthetic induction with consequent core-to-peripheral redistribution of body heat, (2) thermoregulatory vasomotion associated with sweating (precapillary dilation) and shivering (minimal capillary flow), and (3) ambient temperature variation over the clinical range from 18-26 degrees C. Methods The core-to-forehead and core-to-neck temperature difference was measured using liquid-crystal thermometers having an approximately 2 degrees C offset. Differences exceeding 0.5 degree C (a 1 degree C) temperature range) were a priori deemed potentially clinically important. Seven volunteers participated in each protocol. First, core-to-peripheral redistribution of body heat was produced by inducing propofol/desflurane anesthesia; anesthesia was then maintained for 1 h with desflurane. Second, vasodilation was produced by warming unanesthetized volunteers sufficiently to produce sweating; intense vasoconstriction was similarly produced by cooling the volunteers sufficiently to produce shivering. Third, a canopy was positioned to enclose the head, neck, and upper chest of unanesthetized volunteers. Air within the canopy was randomly set to 18, 20, 22, 24, and 26 degrees C. Results Redistribution of body heat accompanying induction of anesthesia had little effect on the core-to-forehead skin temperature difference. However, the core-to-neck skin temperature gradient decreased approximately 0.6 degree C in the hour after induction of anesthesia. Vasomotion associated with shivering and mild sweating altered the core-to-skin temperature difference only a few tenths of a degree centigrade. The absolute value of the core-to-forehead temperature difference exceeded 0.5 degree C during approximately 35% of the measurements, but the difference rarely exceeded 1 degree C. The core-to-neck temperature difference typically exceeded 0.5 degree C and frequently exceeded 1 degree C. Each 1 degree C increase in ambient temperature decreased the core-to-fore-head and core-to-neck skin temperature differences by less than 0.2 degree C. Conclusions Forehead skin temperatures were better than neck skin temperature at estimating core temperature. Core-to-neck temperature differences frequently exceeded 1 degree C (a 2 degrees C range), whereas two thirds of the core-to-forehead differences were within 0.5 degree C. The core-to-skin temperature differences were, however, only slightly altered by inducing anesthesia, vasomotor action, and typical intraoperative changes in ambient temperature.


Sign in / Sign up

Export Citation Format

Share Document