depressional wetland
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 1)

2020 ◽  
Author(s):  
Mohammad Afsar ◽  
Bruce Vasilas ◽  
Yan Jin

<p>Understanding the mechanisms governing the composition and stability of organo-mineral associations is critical to predicting the dynamics of soil organic matter (SOC) and the related global carbon cycling. Redox-induced biogeochemical transformations are the key processes that control the stabilization of SOC via association with metal oxides in terrestrial environments such as wetlands. Despite its high C content (20-30% of terrestrial C), size-dependent organo-mineral associations and their dynamic changes in the redox-dynamic wetlands are poorly understood. Here we present size distribution, concentration, and composition of organo-mineral associations in pore water samples from a depressional wetland located at the Delmarva Bay in Delaware, USA, as influenced by seasonal fluctuations in water table level. The samples were collected from piezometers installed at multiple depths (50 cm, 100 cm, and 200 cm) and in three zones (upland, transitional, and wetland), respectively. Four size fractions were analyzed: dissolved (<2.3 nm), natural nanoparticle (2.3-100 nm, NNP), fine colloid (100-450 nm), and particulate (450-100 nm). Our results revealed that dissolved, NNP, fine colloid and particulate fractions comprised 47 ± 4%, 37 ± 4%, 8 ± 3% and 8 ± 3% of  the bulk organic C (<1000 nm) concentration, respectively. Relative percentages of respective Al, Mn, and Fe were 47 ± 24%, 30 ± 22%, 50 ± 18% at 2.3-450 nm and 22 ± 16%, 17 ± 12%, 25 ± 19% at 450-1000 nm size fraction. The main finding from this study are 1) dissolved and NNP fractions contain higher amount of C than colloidal and particulate fractions and 2) organo-mineral associations have significant differences in their elemental concentrations among different size fractions within colloidal size range. Additionally, the results clearly indicate that the commonly used operational definition for dissolved organic matter (DOM, <450 nm) significantly overestimates the dissolved phase C concentration by including the NNP and colloidal fractions, which contain mineral-associated C. This has important implications in the estimation of SOC decomposition rate in soils, particularly in redox sensitive wetlands, thus in assessing terrestrial C cycling and the transport of OC as well as the associated elements.</p>


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 50 ◽  
Author(s):  
Brian P. Neff ◽  
Donald O. Rosenberry ◽  
Scott G. Leibowitz ◽  
Dave M. Mushet ◽  
Heather E. Golden ◽  
...  

Research into processes governing the hydrologic connectivity of depressional wetlands has advanced rapidly in recent years. Nevertheless, a need persists for broadly applicable, non-site-specific guidance to facilitate further research. Here, we explicitly use the hydrologic landscapes theoretical framework to develop broadly applicable conceptual knowledge of depressional-wetland hydrologic connectivity. We used a numerical model to simulate the groundwater flow through five generic hydrologic landscapes. Next, we inserted depressional wetlands into the generic landscapes and repeated the modeling exercise. The results strongly characterize groundwater connectivity from uplands to lowlands as being predominantly indirect. Groundwater flowed from uplands and most of it was discharged to the surface at a concave-upward break in slope, possibly continuing as surface water to lowlands. Additionally, we found that groundwater connectivity of the depressional wetlands was primarily determined by the slope of the adjacent water table. However, we identified certain arrangements of landforms that caused the water table to fall sharply and not follow the surface contour. Finally, we synthesize our findings and provide guidance to practitioners and resource managers regarding the management significance of indirect groundwater discharge and the effect of depressional wetland groundwater connectivity on pond permanence and connectivity.


2018 ◽  
Vol 1 ◽  
pp. 100002 ◽  
Author(s):  
Grey R. Evenson ◽  
C. Nathan Jones ◽  
Daniel L. McLaughlin ◽  
Heather E. Golden ◽  
Charles R. Lane ◽  
...  

2008 ◽  
Vol 22 (14) ◽  
pp. 2689-2698 ◽  
Author(s):  
Jennifer E. Pyzoha ◽  
Timothy J. Callahan ◽  
Ge Sun ◽  
Carl C. Trettin ◽  
Masato Miwa

Wetlands ◽  
2000 ◽  
Vol 20 (2) ◽  
pp. 373-385 ◽  
Author(s):  
L. Katherine Kirkman ◽  
P. Charles Goebel ◽  
Larry West ◽  
Mark B. Drew ◽  
Brian J. Palik

Sign in / Sign up

Export Citation Format

Share Document