macroscopic quantum systems
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 4)

H-INDEX

10
(FIVE YEARS 0)

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bei-Bei Li ◽  
Lingfeng Ou ◽  
Yuechen Lei ◽  
Yong-Chun Liu

Abstract Cavity optomechanical systems enable interactions between light and mechanical resonators, providing a platform both for fundamental physics of macroscopic quantum systems and for practical applications of precision sensing. The resonant enhancement of both mechanical and optical response in the cavity optomechanical systems has enabled precision sensing of multiple physical quantities, including displacements, masses, forces, accelerations, magnetic fields, and ultrasounds. In this article, we review the progress of precision sensing applications using cavity optomechanical systems. The review is organized in the following way: first we will introduce the physical principles of optomechanical sensing, including a discussion of the noises and sensitivity of the systems, and then review the progress in displacement sensing, mass sensing, force sensing, atomic force microscope (AFM) and magnetic resonance force microscope (MRFM), accelerometry, magnetometry, and ultrasound sensing, and introduce the progress of using quantum techniques especially squeezed light to enhance the performance of the optomechanical sensors. Finally, we give a summary and outlook.


2020 ◽  
Vol 35 (39) ◽  
pp. 2050320
Author(s):  
Hrvoje Nikolić ◽  
Josip Atelj

In a microscopic quantum system one cannot perform a simultaneous measurement of particle and wave properties. This, however, may not be true for macroscopic quantum systems. As a demonstration, we propose to measure the local macroscopic current passed through two slits in a superconductor. According to the theory based on the linearized Ginzburg–Landau equation for the macroscopic pseudo wave function, the streamlines of the measured current should have the same form as particle trajectories in the Bohmian interpretation of quantum mechanics. By an explicit computation we find that the streamlines should show a characteristic wiggling, which is a consequence of quantum interference.


Author(s):  
Wojciech Hubert Zurek

The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists—our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification—of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferredpointer statesconsistent with those obtained via environment-induced superselection, oreinselection. The pointer states obtained in this way determine what can happen—define events—without appealing to Born’s Rule for probabilities. Therefore,pk=|ψk|2can now be deduced from the entanglement-assisted invariance, orenvariance—a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment—throughquantum Darwinism.This article is part of a discussion meeting issue ‘Foundations of quantum mechanics and their impact on contemporary society’.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743003 ◽  
Author(s):  
Johan Hansson ◽  
Stephane Francois

The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose–Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.


Sign in / Sign up

Export Citation Format

Share Document