fault parameter
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 2)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
pp. 147592172098173
Author(s):  
Gabriel Yuji Garoli ◽  
Diogo Stuani Alves ◽  
Tiago Henrique Machado ◽  
Katia Lucchesi Cavalca ◽  
Helio Fiori de Castro

Fault identification is a recurrent topic in rotating machines field. The evaluation of fault parameters allows better maintenance of such expensive and, sometimes, large machines. Unbalance is one of the most common faults, and it is inherent to rotors functioning. Wear in journal bearings is another common fault, caused by several start/stop cycles – when at low rotating speed, there is still contact between shaft and bearing wall. Fault parameter identification generally uses deterministic model–based methods. However, these methods do not take into account the uncertainties inherently involved in the identification process. The stochastic approach by the Bayesian inference is, then, used to account the uncertainties of the fault parameters. The generalized polynomial chaos expansion is proposed to evaluate the inference, due to its faster performance regarding the Markov chain Monte Carlo methods. Deterministic and stochastic approaches were compared; all were based on experimental vibration measurements of the shaft inside the journal bearings. The Bayesian inference with the polynomial chaos showed reliable and promising results for identification of unbalance and bearing wear fault parameters.



Author(s):  
Paul Verrax ◽  
Alberto Bertinato ◽  
Michel Kieffer ◽  
Bertrand Raison


Author(s):  
Mehrdad Moradi ◽  
Bentley James Oakes ◽  
Mustafa Saraoglu ◽  
Andrey Morozov ◽  
Klaus Janschek ◽  
...  


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 55 ◽  
Author(s):  
Suli Sun ◽  
Zhe Cui ◽  
Xiang Zhang ◽  
Wende Tian

Early-stage fault detection and diagnosis of distillation has been considered an essential technique in the chemical industry. In this paper, fault diagnosis of a distillation column is formulated as an inverse problem. The nonlinear least squares algorithm is used to evaluate fault parameters embedded in a nonlinear dynamic model of distillation once abnormal symptoms are detected. A partial least squares regression model is built based on fault parameter history to explicitly predict the development of fault parameters. With the stripper of Tennessee Eastman process as example, this novel approach is tested for step- and random-type faults and several factors affecting its efficiency are discussed. The application result shows that the hybrid inverse problem approach gives the correct change of fault parameter at a speed far faster than the base approach with only a nonlinear model.



2019 ◽  
Vol 9 (16) ◽  
pp. 3329 ◽  
Author(s):  
Donggil Kim ◽  
Dongik Lee

Early detection and diagnosis of wind turbine faults is critical for applying a possible maintenance and control strategy to avoid catastrophic incidents. This paper presents a novel method to estimate the parameter of faults in a wind turbine. In this work, the estimation of fault parameters is reformulated as the state estimation problem by augmenting the parameters as an additional state. The novelty of the proposed method lies in the use of an adaptive fuzzy fading algorithm for the adaptive Kalman filter so that the convergence property during the estimation of fault parameter can be improved. The performance of the proposed method is evaluated through a set of numerical simulations with both linear and non-linear models.



Author(s):  
Igor Loboda ◽  
Juan Luis Pérez-Ruiz ◽  
Sergiy Yepifanov ◽  
Roman Zelenskyi

Abstract Gas turbine diagnostics that relies on gas path measurements is a well-developed area with many algorithms developed. They follow two general approaches, data-driven, and physics-based. The first approach uses deviations of monitored variables from their baseline values. A diagnostic decision is traditionally made in the space of these deviations (diagnostic features) by pattern recognition techniques, for example, artificial neural networks. The necessary fault classes can be constructed from deviation vectors (patterns) using the displays of real faults, and the approach has a theoretical possibility to exclude a complex physics-based model and its inherent errors from a diagnostic process. For the second approach known as a gas path analysis, a nonlinear physics-based model (a.k.a. thermodynamic model) is an integral part of a diagnostic process. The thermodynamic model (or the corresponding linear model) relates monitored variables with operational conditions and model’s internal quantities called fault parameters. The identification of the thermodynamic model on the basis of known measurements of the monitored variables and operational conditions allows estimating unknown fault parameters. The knowledge of these parameters drastically simplifies a final diagnostic decision because great values of these parameters indicate damaged engine components and give us the measure of damage severity. As the diagnostic decision seems to be simple, the studies following this approach are usually completed by the analysis of fault parameter estimation accuracy, and complex pattern recognition techniques are not employed. Instead, simple tolerance-based fault detection and isolation is sometimes performed. It is not clear from known comparative studies which of the two approaches is more accurate, and the issue of seems to be challenging. This paper tries to solve this problem, being grounded on the following principles. We consider that a key difference of the second approach is a transformation from the diagnostic space of the deviations of monitored variables to the space of fault parameters. To evaluate the influence of this transformation on diagnostic accuracy, the other steps of the approaches should be equal. To this end, the pattern recognition technique employed in the data-driven approach is also included in the physics-based approach where it is applied to recognize fault parameter patterns instead of a tolerance-based rule. To realize and compare the data-driven and modified physics-based approaches, two corresponding diagnostic procedures differing only by the mentioned transformation have been developed. They use the same set of deviation vectors of healthy and faulty engines as input data and finally compute true classification rates that are employed to compare the procedures. The results obtained for different cases of the present comparative study show that the classification rates are practically the same for these procedures, and this is true for both fault detection and fault isolation. That is, correct classification does not depend on the mentioned transformation, and both approaches are equal from the standpoint of the classification accuracy of engine states.









Sign in / Sign up

Export Citation Format

Share Document