sand deposit
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 26)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 38 (2) ◽  
pp. 25-35
Author(s):  
Souradeep Mukherjee ◽  
Dr. A. Yugandhara Rao

Surficial sediment transportation studies carried out in the beach zone of Bendi-Baruva mineral sand deposit show that sand grains are transported by wind (saltation and suspension) beyond the high water line. The sand population of the study area contains heavy mineral sands (~20%) like ilmenite, garnet and sillimanite which covers 95% of the heavy mineral distribution with subordinate amounts of monazite, rutile, and zircon whereas light mineral sands (~80%) contain mostly quartz. Due to the sorted nature of these beach and dune sands the whole spectra falls within a specific range of grain size which shows a bi-modal distribution, primary mode at 0.025cm and secondary at 0.015cm. Due to this variation in density and grain size, mass of these sand particles vary resulting in differential transportation in any energy regime. In the study area, on the beach near the frontal dunes, surficial concentration of garnet grains are observed in patches having an average thickness 0.2cm i.e. around ten times of the dominant grain diameter. This surficial enrichment of garnet grains resting on a semi-uniform sand surface is the result of differential transportation of the dominant mineral grains. As more than 80% of the grain size population show a dominant grain size of 0.025cm, the wind flow parameters for the whole population is standardized with mean grain diameter (D) of 0.025cm. Mass of dominant individual minerals arrived from the grain counting technique was tallied with the theoretical mass considering spherical shape of the grains indicates a difference of mass to be within 5%. For ease of calculation and generalization the grains were considered to be spherical and their theoretical masses were taken into consideration in calculations. Considering the whole spectra of mineralogical distribution, a theoretical mass group distribution for dominant different minerals of different dominant grain sizes were formulated and total six mass groups were identified. Because quartz (~80%), ilmenite, sillimanite and garnet (together ~20%) are the most abundant, their positions were identified specifically in the theoretical mass groups and only these are considered for further discussion. To analyse wind velocity and pressure at different heights from the surface, a sediment trap was fabricated using piezo-electric sensors. A tail was attached to orient the device parallel to the wind flow so that the piezo surfaces always face the wind flow at 900 angle. The device records pressure data and converts those into voltage. Using the velocity data, macroscopic physical quantities of aeolian transportation were calculated for the study area, which empirically show the effect of mass in differential transportation of the dominant minerals that gives rise to these surficial garnet patches.


2021 ◽  
pp. 847-852
Author(s):  
W. Wehr ◽  
I. Herle ◽  
P. Kudella ◽  
G. Gudehus
Keyword(s):  

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Burg Flemming ◽  
Keith Martin

AbstractThe study deals with a large sand body (spit-bar) attached to the eastern tip of the Robberg Peninsula, Plettenberg Bay, South Africa. To date, the bar has prograded about 8 km beyond the tip of the peninsula. The bar top is predominantly composed of medium sand, the upper slope of fine sand, and the lower slope of fine muddy sand. Stratigraphically, the sedimentology thus documents an upward coarsening, calcareous quartz-arenitic depositional sequence. The spit-bar as a whole forms the eastern end of a sediment compartment that is clearly distinguishable from neighbouring compartments on the basis of its geomorphology, the textural characteristics of the sediment, and the distribution of sediment thicknesses. Aeolian overpass across the peninsula appears to have formed a fan-like sand deposit in its rear, which is perched upon the upper shoreface of the bay as suggested by the bathymetry to the north of the peninsula. It forms an integral part of the sediment body defining the spit-bar. The estimated volume of sand stored in the spit-bar amounts to 5.815 km3, of which 0.22 km3 is contributed by the aeolian overpass sand. The sediment sources of the spit-bar are located up to 100 km to the west, where a number of small rivers supply limited amounts of sediment to the sea and numerous coastal aeolianite ridges in the Wilderness embayment have been subject to erosion after becoming drowned in the course of the postglacial sea-level rise since about 12 ky BP. By contrast, the sediment volume in the adjacent compartment B to the north (Plettenberg Bay), which has been supplied by local rivers, amounts to only 0.127 km3. In a geological context, large sand bodies such as the Robberg spit-bar are excellent exploration models for hydrocarbons (oil and gas).


2021 ◽  
pp. 1-8
Author(s):  
Maximilian Dröllner ◽  
Milo Barham ◽  
Christopher L. Kirkland ◽  
Bryant Ware

Abstract Detrital zircon geochronology can help address stratigraphic- to lithospheric-scale geological questions. The approach is reliant on statistically robust, representative age distributions that fingerprint source areas. However, there is a range of biases that may influence any detrital age signature. Despite being a fundamental and controllable source of bias, handpicking of zircon grains has received surprisingly little attention. Here, we show statistically significant differences in age distributions between bulk-mounted and handpicked fractions from an unconsolidated heavy mineral sand deposit. Although there is no significant size difference between bulk-mounted and handpicked grains, there are significant differences in their aspect ratio, circularity and colour, which indicate inadvertent preferential visual selection of euhedral and coloured zircon grains. Grain colour comparisons between dated and bulk zircon fractions help quantify bias. Bulk-mounting is the preferred method to avoid human-induced selection bias in detrital zircon geochronology.


2021 ◽  
Vol 16 (1) ◽  
pp. 77-90
Author(s):  
Vaidas Martinkus ◽  
Arnoldas Norkus ◽  
Džigita Nagrockienė

Accuracy of numerical modelling of ground resistance of the displacement pile highly depends on proper evaluation of its states: prior loading and its changes during the loading. Evaluation of initial ground stage, its subsequent changes caused by pile installation and, finally, evolution of the loaded pile resistance are the modelling stages that require validation with specialized test results performed under controlled laboratory conditions. Selection of the proper physical soil model and its parameters should be also done in accordance with the relevant soil tests results. The first paper briefly introduces testing results of a displacement pile prototype. Tests were conducted in the created sand deposit in the laboratory pit. Determining pile resistance and ground stress-strain distribution in the vicinity of the pile allows selecting the physical model for the soil. Numerical calibration of the parameters for the physical model of the selected soil was performed. The second, following paper will introduce analyses of pile resistance. It involves creation of a discrete model and its parameters, numerical modelling of pile resistance against vertical load. The pile ground resistance modelling applying the physical model of the selected soil includes the following stages: evaluation at rest stage and assessment of residual effects of installation and displacement pile loading resistance. Numerical analyses results were validated with displacement pile prototype testing results.


2020 ◽  
Vol 23 (3-4) ◽  
Author(s):  
Rik HOUTHUYS ◽  
Johan MATTHIJS

The present geological map of the Flemish Region shows a small lens-shaped isolated outcrop of the Miocene Bolderberg, Diest and Kasterlee Formations, surrounded by younger formations, in an area that coincides with the tectonic Bree Uplift segment, on the southwestern border of the Roer Valley Graben in NE Limburg. The fault, bordering the segment at its SW side, had been interpreted to be tectonically active throughout the Neogene. Now, it is argued that an erroneous lithostratigraphic interpretation of the outcropping strata supported that view. Field observations of some of the outcrops and sampled drill holes show that the sediments do not belong to an Opitter member of the Bolderberg Formation, a Gruitrode Mill member of the Diest Formation and a Dorperberg member of the Kasterlee Formation, but most probably to the lower, latest Miocene or early Pliocene part of the Mol Formation and an unknown Pliocene marginal marine deposit not unlike and at about the stratigraphic position of the Poederlee Formation. That glauconiferous sand deposit, which has always been interpreted as consisting of two successive sedimentary cycles, is now accommodated in a single cycle, using the sedimentary model of deposition in a confined, backbarrier tidal basin subject to marine sand input and local stages of flow constriction and intraformational incision. Like already proposed by Rossa (1986) and Demyttenaere (1989), reprocessed seismic sections show only minor movements along the southwestern fault of the Bree Uplift since the Paleocene, and no inverse tectonic movements at all since the Middle Miocene.


2020 ◽  
Vol 10 (20) ◽  
pp. 7194
Author(s):  
Paolo Ruggeri ◽  
Viviene M. E. Fruzzetti ◽  
Giuseppe Scarpelli

International standards discourage the use of grouted anchors with a fixed length exceeding 10 m. However, grouted anchors with a fixed length between 10 and 20 m are frequently used in Italy to transfer high loads to ground with poor geotechnical properties. This paper presents the results of investigation tests on an anchor with a length of 36 m, of which 18 m is fixed, sloping 40° from the horizontal; the anchor is comprised of a reinforced thread-bar which was instrumented with strain gauges and founded in nonhomogeneous ground, a sand deposit followed by marly clay. The test aimed at investigating the progressive mobilization of the shear strength along the foundation. The results indicate a very low shear strength offered by the sand, probably disturbed by the drilling, and an unusually fast mobilization of the shear strength in the marly clay at the deep end of the anchor. The results are particularly useful to identify the reasons for the observed poor performance of the grouted anchor. In particular, the study once again made it clear how important the influence of the execution details on reaching the expected load capacity may be, and likewise the practice of investigation tests on suitably instrumented test anchors.


Sign in / Sign up

Export Citation Format

Share Document