auditory area
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 4)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aurore Cazala ◽  
Catherine Del Negro ◽  
Nicolas Giret

AbstractThe ability of the auditory system to selectively recognize natural sound categories while maintaining a certain degree of tolerance towards variations within these categories, which may have functional roles, is thought to be crucial for vocal communication. To date, it is still largely unknown how the balance between tolerance and sensitivity to variations in acoustic signals is coded at a neuronal level. Here, we investigate whether neurons in a high-order auditory area in zebra finches, a songbird species, are sensitive to natural variations in vocal signals by recording their responses to repeated exposures to identical and variant sound sequences. We used the songs of male birds which tend to be highly repetitive with only subtle variations between renditions. When playing these songs to both anesthetized and awake birds, we found that variations between songs did not affect the neuron firing rate but the temporal reliability of responses. This suggests that auditory processing operates on a range of distinct timescales, namely a short one to detect variations in vocal signals, and longer ones that allow the birds to tolerate variations in vocal signal structure and to encode the global context.


2021 ◽  
Author(s):  
Aurore Cazala ◽  
Catherine Del Negro ◽  
Nicolas Giret

The ability of the auditory system to selectively recognize natural sound categories with a tolerance to variations within categories is thought to be crucial for vocal communication. Subtle variations, however, may have functional roles. To date, how the coding of the balance between tolerance and sensitivity to variations in acoustic signals is performed at the neuronal level requires further studies. We investigated whether neurons of a high-order auditory area in a songbird species, the zebra finch, are sensitive to natural variations in vocal signals by recording responses to repeated exposure to similar and variant sound sequences. We took advantage of the intensive repetition of the male songs which subtly vary from rendition to rendition. In both anesthetized and awake birds, responses based on firing rate during sequence presentation did not show any clear sensitivity to these variations, unlike the temporal reliability of responses based on a 10 milliseconds resolution that depended on whether variant or similar sequences were broadcasted and the context of presentation. Results therefore suggest that auditory processing operates on distinct timescales, a short one to detect variations in individual's vocal signals, longer ones that allow tolerance in vocal signal structure and the encoding of the global context.


2021 ◽  
Vol 14 ◽  
Author(s):  
Wenqing Xia ◽  
Jinluan Cui ◽  
Yong Luo ◽  
Jin-Jing Xu ◽  
Huiyou Chen ◽  
...  

PurposeBoth tinnitus and type 2 diabetes mellitus (T2DM) are linked with cognitive decline and brain dysfunction. This study used arterial spin labeling (ASL) perfusion functional magnetic resonance imaging (fMRI) to examine the abnormal cerebral blood flow (CBF) patterns existed in tinnitus patients and potential relationships between the abnormal CBF and cognitive performance. The impact of T2DM on CBF alterations in tinnitus patients was further explored.MethodsSixty tinnitus patients and 40 non-tinnitus subjects were recruited. CBF images were collected and analyzed using ASL perfusion fMRI. Brain regions with CBF alterations between tinnitus patients and non-tinnitus controls were identified by one-way analysis of variance. Interaction effects between tinnitus and T2DM for CBF changes were also selected. Then, correlation analyses were calculated to specify the link between CBF changes and cognitive performance and between CBF changes and diabetic characteristics.ResultsTinnitus patients showed decreased CBF, primarily in the auditory area and default mode network (DMN), compared with non-tinnitus controls. Decreased CBF in these regions was correlated with executive function and attention. The interaction effect between tinnitus and T2DM was significant in the right medial prefrontal gyrus. Additionally, CBF in the right medial prefrontal gyrus was correlated with tinnitus distress and cognitive performance. In tinnitus patients, Hemoglobin A1c was associated with CBF in the right medial prefrontal gyrus.ConclusionTinnitus affects brain perfusion in the auditory area and DMN. T2DM and uncontrolled glucose levels may aggravate a CBF decrease in tinnitus patients. These new findings implied that tinnitus patients may benefit from blood glucose control in terms of their cognitive function and tinnitus distress.


2019 ◽  
Vol 39 (31) ◽  
pp. 6150-6161 ◽  
Author(s):  
Aurore Cazala ◽  
Nicolas Giret ◽  
Jean-Marc Edeline ◽  
Catherine Del Negro

2010 ◽  
Vol 68 ◽  
pp. e143
Author(s):  
Saki Egusa ◽  
Yukiko Inoue ◽  
Junko Asami ◽  
Mikio Hoshino ◽  
Takayuki Sota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document