dna methylase
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 4)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Mathilde Clement ◽  
Martine Da Rocha ◽  
Sandra Agnel ◽  
Guenter Raddatz ◽  
Alain Robichon ◽  
...  

Pea aphid Acyrtosiphon pisum, a sap-feeding insect, has established a mutualistic relationship with an endosymbiotic bacteria (Buchnera aphidicola) that constitutes an evolutionary successful symbiosis to synthetize complex chemical compounds from a nutrient deprived diet. In this study, led by the presence of DNMT1 and a putative DNMT3 methylase in the aphid genome, we investigated the distribution of the methyl groups on 5'cytosine in CpG motifs on the whole genomes of host and endosymbiont, and looked into their correlation with gene expression. The DNA methylation turned to be present at low level in aphid (around 3% of total genomic cytosine) compared to mammals and plants, but increased to ~9% in genes. Interestingly, the reduced genome of the endosymbiont Buchnera also shows global low level of methyl cytosine despite the fact that its genome does not shelter any DNA methylase. This finding argues for the import of DNA methylase from the host to the endosymbiont. The observed differences in methylation patterns between two clonal variants (host plus endosymbiont) are reported along with the differences in their transcriptome profiles. Our data allowed to decipher a dynamic combinatorial DNA methylation and epigenetic cross talk between host and symbiont in a clonality context that might count for the aphid adaptation to environment.


2020 ◽  
Vol 21 (3) ◽  
pp. 953 ◽  
Author(s):  
Shihang Fan ◽  
Hongfang Liu ◽  
Jing Liu ◽  
Wei Hua ◽  
Shouming Xu ◽  
...  

DNA methylation is a process through which methyl groups are added to the DNA molecule, thereby modifying the activity of a DNA segment without changing the sequence. Increasing evidence has shown that DNA methylation is involved in various aspects of plant growth and development via a number of key processes including genomic imprinting and repression of transposable elements. DNA methylase and demethylase are two crucial enzymes that play significant roles in dynamically maintaining genome DNA methylation status in plants. In this work, 22 DNA methylase genes and six DNA demethylase genes were identified in rapeseed (Brassica napus L.) genome. These DNA methylase and DNA demethylase genes can be classified into four (BnaCMTs, BnaMET1s, BnaDRMs and BnaDNMT2s) and three (BnaDMEs, BnaDML3s and BnaROS1s) subfamilies, respectively. Further analysis of gene structure and conserved domains showed that each sub-class is highly conserved between rapeseed and Arabidopsis. Expression analysis conducted by RNA-seq as well as qRT-PCR suggested that these DNA methylation/demethylation-related genes may be involved in the heat/salt stress responses in rapeseed. Taken together, our findings may provide valuable information for future functional characterization of these two types of epigenetic regulatory enzymes in polyploid species such as rapeseed, as well as for analyzing their evolutionary relationships within the plant kingdom.


2019 ◽  
Vol 47 (11) ◽  
pp. 5698-5711 ◽  
Author(s):  
Nalini Raghunathan ◽  
Sayantan Goswami ◽  
Jakku K Leela ◽  
Apuratha Pandiyan ◽  
Jayaraman Gowrishankar

2018 ◽  
Author(s):  
Xuefang Xu ◽  
Heng Zhang ◽  
Ying Huang ◽  
Yuan Zhang ◽  
Xiaoyuan Wang ◽  
...  

ABSTRACTMraW (RsmH) is an AdoMet-dependent 16S rRNA methyltransferase conserved in bacteria and plays a role in the fine-tuning of the ribosomal decoding center. It was recently found to contribute to the virulence ofStaphylococcus aureusin host animals. In this study, we examined the function of MraW inEscherichia coliO157:H7 and found that deletion ofmraWled to decreased motility and flagellar production. Whole-genome bisulfite sequencing showed genome wide decrease of methylation of 336 genes and 219 promoters in themraWmutant. The methylation level of 4 flagellar gene sequences were further confirmed by bisulfite PCR sequencing. Quantitative reverse transcription PCR results indicated the transcription of these genes was also affected. MraW was observed to directly bind to the four flagellar gene sequences by electrophoretic mobility shift assay (EMSA). A common motif in differentially methylated regions of promoters and coding regions of the 4 flagellar genes was identified. Reduced methylation was correlated with altered expression of 21 of the 24 genes tested. DNA methylation activity of MraW was confirmed by DNA methyltransferase (DNMT) activity assayin vitro. ThemraWmutant colonized poorer than wild type in mice. we further found that the expression ofmraZin themraWmutant was increased confirming the antagonistic effect ofmraWonmraZ. In conclusion,mraWwas found to be a DNA methylase and has a wide-ranging effect onE.coliO157:H7 including motility and virulencein vivovia genome wide methylation andmraZantagonism.IMPORTANCEMraW is a well-studied 16S rRNA methyltransferase and was recently found have an impact on bacterial virulence. Here we demonstrated its new function as a DNA methylase and effect on motility, colonization in mice, DNA methylation in genome wide and contribution to virulence. Its direct binding of differentially methylated flagellar-encoding DNA sequences was observed, indicating a correlation between DNA methylation and regulation of flagellar genes. In addition, the expression ofmraZwhich function as an antagonist ofmraWwas increased in themraWmutant.mraWplays an important role in gene regulation likely through DNA methylation. Clearly it plays a role in virulence inE. coliO157:H7. It also opens a new research field for virulence study in bacteria.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Melissa B. Oliver ◽  
Ankita Basu Roy ◽  
Ranjit Kumar ◽  
Elliot J. Lefkowitz ◽  
W. Edward Swords

ABSTRACT A growing number of bacterial species undergo epigenetic phase variation due to variable expression or specificity of DNA-modifying enzymes. For pneumococci, this phase variation has long been appreciated as being revealed by changes in colony opacity, which are reflected in changes in expression or accessibility of factors on the bacterial surface. Recent work showed that recombination-generated variation in alleles of the HsdS DNA methylase specificity subunit mediated pneumococcal phase variation. We generated phase-locked populations of S. pneumoniae TIGR4 expressing a single nonvariant hsdS allele and observed significant differences in gene expression and virulence. These results highlight the importance of focused pathogenesis studies within specific phase types. Moreover, the generation of single-allele hsdS constructs will greatly facilitate such studies. Streptococcus pneumoniae (pneumococcus) is a leading human pathogen that can cause serious localized and invasive diseases. Pneumococci can undergo a spontaneous and reversible phase variation that is reflected in colony opacity and which allows the population to adapt to different host environments. Generally, transparent variants are adapted for nasopharyngeal colonization, whereas opaque variants are associated with invasive disease. In recent work, colony phase variation was shown to occur by means of recombination events to generate multiple alleles of the hsdS targeting domain of a DNA methylase complex, which mediates epigenetic changes in gene expression. A panel of isogenic strains were created in the well-studied S. pneumoniae TIGR4 background that are “locked” in the transparent (n = 4) or opaque (n = 2) colony phenotype. The strains had significant differences in colony size which were stable over multiple passages in vitro and in vivo. While there were no significant differences in adherence for the phase-locked mutant strains to immortalized epithelial cells, biofilm formation and viability were reduced for the opaque variants in static assays. Nasopharyngeal colonization was stable for all strains, but the mortality rates differed between them. Transcript profiling by transcriptome sequencing (RNA-seq) analyses revealed that the expression levels of certain virulence factors were increased in a phase-specific manner. As epigenetic regulation of phase variation (often referred to as "phasevarion") is emerging as a common theme for mucosal pathogens, these results serve as a model for future studies of host-pathogen interactions. IMPORTANCE A growing number of bacterial species undergo epigenetic phase variation due to variable expression or specificity of DNA-modifying enzymes. For pneumococci, this phase variation has long been appreciated as being revealed by changes in colony opacity, which are reflected in changes in expression or accessibility of factors on the bacterial surface. Recent work showed that recombination-generated variation in alleles of the HsdS DNA methylase specificity subunit mediated pneumococcal phase variation. We generated phase-locked populations of S. pneumoniae TIGR4 expressing a single nonvariant hsdS allele and observed significant differences in gene expression and virulence. These results highlight the importance of focused pathogenesis studies within specific phase types. Moreover, the generation of single-allele hsdS constructs will greatly facilitate such studies.


2017 ◽  
Vol 1861 (3) ◽  
pp. 593-602 ◽  
Author(s):  
Nayana A. Patil ◽  
Bhakti Basu ◽  
Deepti D. Deobagkar ◽  
Shree K. Apte ◽  
Dileep N. Deobagkar

Sign in / Sign up

Export Citation Format

Share Document