dna demethylase
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
pp. 101499
Author(s):  
Yuting Liu ◽  
Yaqian Chen ◽  
Yuan Wang ◽  
Shuang Jiang ◽  
Weimin Lin ◽  
...  

Author(s):  
Qiao Li ◽  
Cheng Qian ◽  
Harry Feng ◽  
Tyger Lin ◽  
Qingsan Zhu ◽  
...  

2020 ◽  
Vol 104 (6) ◽  
pp. 575-582
Author(s):  
June-Sik Kim ◽  
Satoshi Kidokoro ◽  
Kazuo Shinozaki ◽  
Kazuko Yamaguchi-Shinozaki

2020 ◽  
Vol 21 (3) ◽  
pp. 953 ◽  
Author(s):  
Shihang Fan ◽  
Hongfang Liu ◽  
Jing Liu ◽  
Wei Hua ◽  
Shouming Xu ◽  
...  

DNA methylation is a process through which methyl groups are added to the DNA molecule, thereby modifying the activity of a DNA segment without changing the sequence. Increasing evidence has shown that DNA methylation is involved in various aspects of plant growth and development via a number of key processes including genomic imprinting and repression of transposable elements. DNA methylase and demethylase are two crucial enzymes that play significant roles in dynamically maintaining genome DNA methylation status in plants. In this work, 22 DNA methylase genes and six DNA demethylase genes were identified in rapeseed (Brassica napus L.) genome. These DNA methylase and DNA demethylase genes can be classified into four (BnaCMTs, BnaMET1s, BnaDRMs and BnaDNMT2s) and three (BnaDMEs, BnaDML3s and BnaROS1s) subfamilies, respectively. Further analysis of gene structure and conserved domains showed that each sub-class is highly conserved between rapeseed and Arabidopsis. Expression analysis conducted by RNA-seq as well as qRT-PCR suggested that these DNA methylation/demethylation-related genes may be involved in the heat/salt stress responses in rapeseed. Taken together, our findings may provide valuable information for future functional characterization of these two types of epigenetic regulatory enzymes in polyploid species such as rapeseed, as well as for analyzing their evolutionary relationships within the plant kingdom.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8432 ◽  
Author(s):  
Chen Zhu ◽  
Shuting Zhang ◽  
Chengzhe Zhou ◽  
Lan Chen ◽  
Haifeng Fu ◽  
...  

DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. In the plant kingdom, cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes have been identified in some plant species. However, to the best of our knowledge, no investigator has focused on the identification and analysis of C5-MTase and dMTase genes in tea plants (Camellia sinensis) based on genome-wide levels. In this study, eight CsC5-MTases and four dMTases were identified in tea plants. These CsC5-MTase genes were divided into four subfamilies, including CsMET, CsCMT, CsDRM and CsDNMT2. The CsdMTase genes can be classified into CsROS, CsDME and CsDML. Based on conserved domain analysis of these genes, the gene loss and duplication events occurred during the evolution of CsC5-MTase and CsdMTase. Furthermore, multiple cis-acting elements were observed in the CsC5-MTase and CsdMTase, including light responsiveness, phytohormone responsiveness, stress responsiveness, and plant growth and development-related elements. Then, we investigated the transcript abundance of CsC5-MTase and CsdMTase under abiotic stress (cold and drought) and withering processing (white tea and oolong tea). Notably, most CsC5-MTases, except for CsCMT1 and CsCMT2, were significantly downregulated under abiotic stress, while the transcript abundance of all four CsdMTase genes was significantly induced. Similarly, the same transcript abundance of CsC5-MTase and CsdMTase was found during withering processing of white tea and oolong tea, respectively. In total, our findings will provide a basis for the roles of CsC5-MTase and CsdMTase in response to abiotic stress and the potential functions of these two gene families in affecting tea flavor during tea withering processing.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Xiaomin YANG ◽  
Xuke LU ◽  
Xiugui CHEN ◽  
Delong WANG ◽  
Junjuan WANG ◽  
...  

Abstract Background DNA methylation is an important epigenetic factor that maintains and regulates gene expression. The mode and level of DNA methylation depend on the roles of DNA methyltransferase and demethylase, while DNA demethylase plays a key role in the process of DNA demethylation. The results showed that the plant’s DNA demethylase all contained conserved DNA glycosidase domain. This study identified the cotton DNA demethylase gene family and analyzed it using bioinformatics methods to lay the foundation for further study of cotton demethylase gene function. Results This study used genomic information from diploid Gossypium raimondii JGI (D), Gossypium arboreum L. CRI (A), Gossypium hirsutum L. JGI (AD1) and Gossypium barbadebse L. NAU (AD2) to Arabidopsis thaliana. Using DNA demethylase genes sequence of Arabidopsis as reference, 25 DNA demethylase genes were identified in cotton by BLAST analysis. There are 4 genes in the genome D, 5 genes in the genome A, 10 genes in the genome AD1, and 6 genes in the genome AD2. The gene structure and evolution were analyzed by bioinformatics, and the expression patterns of DNA demethylase gene family in Gossypium hirsutum L. were analyzed. From the phylogenetic tree analysis, the DNA demethylase gene family of cotton can be divided into four subfamilies: REPRESSOR of SILENCING 1 (ROS1), DEMETER (DME), DEMETER-LIKE 2 (DML2), and DEMETER-LIKE3 (DML3). The sequence similarity of DNA demethylase genes in the same species was higher, and the genetic relationship was also relatively close. Analysis of the gene structure revealed that the DNA demethylase gene family members of the four subfamilies varied greatly. Among them, the number of introns of ROS1 and DME subfamily was larger, and the gene structure was more complex. For the analysis of the conserved domain, it was known that the DNA demethylase family gene member has an endonuclease III (ENDO3c) domain. Conclusion The genes of the DNA demethylase family are distributed differently in different cotton species, and the gene structure is very different. High expression of ROS1 genes in cotton were under abiotic stress. The expression levels of ROS1 genes were higher during the formation of cotton ovule. The transcription levels of ROS1 family genes were higher during cotton fiber development.


2019 ◽  
Vol 61 (2) ◽  
pp. 110-119 ◽  
Author(s):  
Xinlong Xiao ◽  
Jieqiong Zhang ◽  
Tao Li ◽  
Xing Fu ◽  
Viswanathan Satheesh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document