scholarly journals Influence of Melt Ponds on the SSMIS-Based Summer Sea Ice Concentrations in the Arctic

2021 ◽  
Vol 13 (19) ◽  
pp. 3882
Author(s):  
Jiechen Zhao ◽  
Yining Yu ◽  
Jingjing Cheng ◽  
Honglin Guo ◽  
Chunhua Li ◽  
...  

As a long-term, near real-time, and widely used satellite derived product, the summer performance of the Special Sensor Microwave Imager/Sounder (SSMIS)-based sea ice concentration (SIC) is commonly doubted when extensive melt ponds exist on the ice surface. In this study, three SSMIS-based SIC products were assessed using ship-based SIC and melt pond fraction (MPF) observations from 60 Arctic cruises conducted by the Ice Watch Program and the Chinese Icebreaker Xuelong I/II. The results indicate that the product using the NASA Team (SSMIS-NT) algorithm and the product released by the Ocean and Sea Ice Satellite Application Facility (SSMIS-OS) underestimated the SIC by 15% and 7–9%, respectively, which mainly occurred in the high concentration rages, such as 80–100%, while the product using the Bootstrap (SSMIS-BT) algorithm overestimated the SIC by 3–4%, usually misestimating 80% < SIC < 100% as 100%. The MPF affected the SIC biases. For the high MPF case (e.g., 50%), the estimated biases for the three products increased to 20% (SSMIS-NT), 7% (SSMIS-BT), and 20% (SSMIS-OS) due to the influence of MPF. The relationship between the SIC biases and the MPF observations established in this study was demonstrated to greatly improve the accuracy of the 2D SIC distributions, which are useful references for model assimilation, algorithm improvement, and error analysis.

2020 ◽  
Author(s):  
Sanggyun Lee ◽  
Julienne Stroeve ◽  
Michel Tsamados

&lt;p&gt;&amp;#160;Melt ponds are a dominant feature on the Arctic sea ice surface in summer, occupying up to about 50 &amp;#8211; 60% of the sea ice surface during advanced melt. Melt ponds normally begin to form around mid-May in the marginal ice zone and expand northwards as the summer melt season progresses. Once melt ponds emerge, the scattering characteristics of the ice surface changes, dramatically lowering the sea ice albedo. Since 96% of the total annual solar heat into the ocean through sea ice occurs between May and August, the presence of melt ponds plays a significant role in this transfer of solar heat, influencing not only the sea ice energy balance, but also the amount of light available under the sea ice and ocean primary productivity. Given the importance melt ponds play in the coupled Arctic climate-ecosystem, mapping and quantification of melt pond variability on a Pan-Arctic basin scale are needed. Satellite-based observations are the only way to map melt ponds and albedo changes on a pan-Arctic scale. R&amp;#246;sel et al. (2012) utilized a MODIS 8-day average product to map melt ponds on a pan-Arctic scale and over several years. In another approach, melt pond fraction and surface albedo were retrieved based on the physical and optical characteristics of sea ice and melt ponds without a priori information using MERIS.Here, we propose a novel machine learning-based methodology to map Arctic melt ponds from MODIS 500m resolution data. We provide a merging procedure to create the first pan-Arctic melt pond product spanning a 20-year period at a weekly temporal resolution. Specifically, we use MODIS data together with machine learning, including multi-layer neural network and logistic regression to test our ability to map melt ponds from the start to the end of the melt season. Since sea ice reflectance is strongly dependent on the viewing and solar geometry (i.e. sensor and solar zenith and azimuth angles), we attempt to minimize this dependence by using normalized band ratios in the machine learning algorithms. Each melt pond retrieval algorithm is different and validation ways are different as well producing somewhat dissimilar melt pond results. In this study, we inter-compare melt ponds products from different institutes, including university of Hamburg, university of Bremen, and university college London. The melt pond maps are compared with melt onset and freeze-up dates data and sea ice concentration. The melt pond maps are evaluated by melt pond fraction statistics from high resolution satellite (MEDEA) images that have not been used for the evaluation in melt pond products.&amp;#160;&lt;/p&gt;


2016 ◽  
Vol 10 (5) ◽  
pp. 2217-2239 ◽  
Author(s):  
Stefan Kern ◽  
Anja Rösel ◽  
Leif Toudal Pedersen ◽  
Natalia Ivanova ◽  
Roberto Saldo ◽  
...  

Abstract. Sea-ice concentrations derived from satellite microwave brightness temperatures are less accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt ponds, but also by changes in the properties of snow and the sea-ice surface itself. We investigate the sensitivity of eight sea-ice concentration retrieval algorithms to melt ponds by comparing sea-ice concentration with the melt-pond fraction. We derive gridded daily sea-ice concentrations from microwave brightness temperatures of summer 2009. We derive the daily fraction of melt ponds, open water between ice floes, and the ice-surface fraction from contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only use grid cells where the MODIS sea-ice concentration, which is the melt-pond fraction plus the ice-surface fraction, exceeds 90 %. For one group of algorithms, e.g., Bristol and Comiso bootstrap frequency mode (Bootstrap_f), sea-ice concentrations are linearly related to the MODIS melt-pond fraction quite clearly after June. For other algorithms, e.g., Near90GHz and Comiso bootstrap polarization mode (Bootstrap_p), this relationship is weaker and develops later in summer. We attribute the variation of the sensitivity to the melt-pond fraction across the algorithms to a different sensitivity of the brightness temperatures to snow-property variations. We find an underestimation of the sea-ice concentration by between 14 % (Bootstrap_f) and 26 % (Bootstrap_p) for 100 % sea ice with a melt-pond fraction of 40 %. The underestimation reduces to 0 % for a melt-pond fraction of 20 %. In presence of real open water between ice floes, the sea-ice concentration is overestimated by between 26 % (Bootstrap_f) and 14 % (Bootstrap_p) at 60 % sea-ice concentration and by 20 % across all algorithms at 80 % sea-ice concentration. None of the algorithms investigated performs best based on our investigation of data from summer 2009. We suggest that those algorithms which are more sensitive to melt ponds could be optimized more easily because the influence of unknown snow and sea-ice surface property variations is less pronounced.


2020 ◽  
Author(s):  
Stefan Kern ◽  
Thomas Lavergne ◽  
Dirk Notz ◽  
Leif Toudal Pedersen ◽  
Rasmus Tage Tonboe

Abstract. We report on results of a systematic inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 km grid resolution from satellite passive microwave (PMW) observations for the Arctic during summer. The products are compared against SIC and net ice-surface fraction (ISF) – SIC minus the per-grid cell melt-pond fraction (MPF) on sea ice – as derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations and observed from ice-going vessels. Like in Kern et al. (2019), we group the 10 products based on the concept of the SIC retrieval used. Group I consists of products of the EUMETSAT OSI SAF and ESA CCI algorithms. Group II consists of products derived with the Comiso bootstrap algorithm and the NOAA NSIDC SIC climate data record (CDR). Group III consists of ARTIST Sea Ice (ASI) and NASA Team (NT) algorithm products and group IV consists of products of the enhanced NASA Team algorithm (NT2). We find wide-spread positive and negative differences between PMW and MODIS SIC with magnitudes frequently reaching up to 20–25 % for groups I and III and up to 30–35 % for groups II and IV. On a pan-Arctic scale these differences may cancel out: Arctic average SIC from Group I products agrees with MODIS within 2–5 % accuracy during the entire melt period from May through September. Group II and IV products over-estimate MODIS Arctic average SIC by 5–10 %. Out of group III, ASI is similar to group I products while NT SIC under-estimates MODIS Arctic average SIC by 5–10 %. These differences, when translated into the impact computing Arctic sea-ice area (SIA), match well with the differences in SIA between the four groups reported for the summer months by Kern et al. (2019). MODIS ISF is systematically over-estimated by all products; NT provides the smallest (up to 25 %) over-estimations, group II and IV products the largest (up to 45 %) over-estimations. The spatial distribution of the observed over-estimation of MODIS ISF agrees reasonably well with the spatial distribution of the MODIS MPF and we find a robust linear relationship between PMW SIC and MODIS ISF for group I and III products during peak melt, i.e. July and August. We discuss different cases taking into account the expected influence of ice-surface properties other than melt ponds, i.e. wet snow and coarse grained snow / refrozen surface, on PMW observations used in the SIC retrieval algorithms. Based on this discussion we identify the mismatch between the actually observed surface properties and those represented by the ice tie points as the most likely reason for i) the observed differences between PMW SIC and MODIS ISF and for ii) the often surprisingly small difference between PMW and MODIS SIC in areas of high melt-pond fraction. We conclude that all 10 SIC products are highly inaccurate during summer melt. We hypothesize that the un-known amount of melt-pond signatures likely included in the ice tie points plays an important role – particularly for groups I and II – and suggest to conduct further research in this field.


2020 ◽  
Vol 14 (7) ◽  
pp. 2469-2493 ◽  
Author(s):  
Stefan Kern ◽  
Thomas Lavergne ◽  
Dirk Notz ◽  
Leif Toudal Pedersen ◽  
Rasmus Tonboe

Abstract. We report on results of a systematic inter-comparison of 10 global sea-ice concentration (SIC) data products at 12.5 to 50.0 km grid resolution from satellite passive microwave (PMW) observations for the Arctic during summer. The products are compared against SIC and net ice surface fraction (ISF) – SIC minus the per-grid-cell melt pond fraction (MPF) on sea ice – as derived from MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations and observed from ice-going vessels. Like in Kern et al. (2019), we group the 10 products based on the concept of the SIC retrieval used. Group I consists of products of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility (OSI SAF) and European Space Agency (ESA) Climate Change Initiative (CCI) algorithms. Group II consists of products derived with the Comiso bootstrap algorithm and the National Oceanographic and Atmospheric Administration (NOAA) National Snow and Ice Data Center (NSIDC) SIC climate data record (CDR). Group III consists of Arctic Radiation and Turbulence Interaction Study (ARTIST) Sea Ice (ASI) and National Aeronautics and Space Administration (NASA) Team (NT) algorithm products, and group IV consists of products of the enhanced NASA Team algorithm (NT2). We find widespread positive and negative differences between PMW and MODIS SIC with magnitudes frequently reaching up to 20 %–25 % for groups I and III and up to 30 %–35 % for groups II and IV. On a pan-Arctic scale these differences may cancel out: Arctic average SIC from group I products agrees with MODIS within 2 %–5 % accuracy during the entire melt period from May through September. Group II and IV products overestimate MODIS Arctic average SIC by 5 %–10 %. Out of group III, ASI is similar to group I products while NT SIC underestimates MODIS Arctic average SIC by 5 %–10 %. These differences, when translated into the impact computing Arctic sea-ice area (SIA), match well with the differences in SIA between the four groups reported for the summer months by Kern et al. (2019). MODIS ISF is systematically overestimated by all products; NT provides the smallest overestimations (up to 25 %) and group II and IV products the largest overestimations (up to 45 %). The spatial distribution of the observed overestimation of MODIS ISF agrees reasonably well with the spatial distribution of the MODIS MPF and we find a robust linear relationship between PMW SIC and MODIS ISF for group I and III products during peak melt, i.e. July and August. We discuss different cases taking into account the expected influence of ice surface properties other than melt ponds, i.e. wet snow and coarse-grained snow/refrozen surface, on brightness temperatures and their ratios used as input to the SIC retrieval algorithms. Based on this discussion we identify the mismatch between the actually observed surface properties and those represented by the ice tie points as the most likely reason for (i) the observed differences between PMW SIC and MODIS ISF and for (ii) the often surprisingly small difference between PMW and MODIS SIC in areas of high melt pond fraction. We conclude that all 10 SIC products are highly inaccurate during summer melt. We hypothesize that the unknown number of melt pond signatures likely included in the ice tie points plays an important role – particularly for groups I and II – and recommend conducting further research in this field.


2016 ◽  
Author(s):  
R. T. Tonboe ◽  
S. Eastwood ◽  
T. Lavergne ◽  
A. M. Sørensen ◽  
N. Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of American microwave radiometer data from Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from 1978 to 2014 and updates and further developments are planned for the next phase of the project. The methodology is using: 1) numerical weather prediction (NWP) input to a radiative transfer model (RTM) for correction of the brightness temperatures for reduction of atmospheric noise, 2) dynamical algorithm tie-points to mitigate trends in residual atmospheric, sea ice and water emission characteristics and inter-sensor differences/biases, 3) and a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new algorithm has been developed to estimate the spatially and temporally varying sea ice concentration uncertainties. A comparison to sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate ice concentrations. The sea ice climate dataset is available for download at (www.osisaf.org) including documentation.


2016 ◽  
Author(s):  
Carolina Gabarro ◽  
Antonio Turiel ◽  
Pedro Elosegui ◽  
Joaquim A. Pla-Resina ◽  
Marcos Portabella

Abstract. We present a new method to estimate sea ice concentration in the Arctic Ocean using brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) interferometric satellite. The method, which employs a Maximum Likelihood Estimator (MLE), exploits the marked difference in radiative properties between sea ice and seawater, in particular when observed over the wide range of satellite viewing angles afforded by SMOS. Observations at L-band frequencies such as those from SMOS (i.e., 1.4 GHz, or equivalently 21-cm wavelength) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency. We find that sea ice concentration is well determined (correlations of about 0.75) as compared to estimates from other sensors such as the Special Sensor Microwave/Imager (SSM/I and SSMIS). We also find that the efficacy of the method decreases under thin sea ice conditions (ice thickness


2016 ◽  
Vol 10 (5) ◽  
pp. 2275-2290 ◽  
Author(s):  
Rasmus T. Tonboe ◽  
Steinar Eastwood ◽  
Thomas Lavergne ◽  
Atle M. Sørensen ◽  
Nicholas Rathmann ◽  
...  

Abstract. An Arctic and Antarctic sea ice area and extent dataset has been generated by EUMETSAT's Ocean and Sea Ice Satellite Application Facility (OSISAF) using the record of microwave radiometer data from NASA's Nimbus 7 Scanning Multichannel Microwave radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and Special Sensor Microwave Imager and Sounder (SSMIS) satellite sensors. The dataset covers the period from October 1978 to April 2015 and updates and further developments are planned for the next phase of the project. The methodology for computing the sea ice concentration uses (1) numerical weather prediction (NWP) data input to a radiative transfer model for reduction of the impact of weather conditions on the measured brightness temperatures; (2) dynamical algorithm tie points to mitigate trends in residual atmospheric, sea ice, and water emission characteristics and inter-sensor differences/biases; and (3) a hybrid sea ice concentration algorithm using the Bristol algorithm over ice and the Bootstrap algorithm in frequency mode over open water. A new sea ice concentration uncertainty algorithm has been developed to estimate the spatial and temporal variability in sea ice concentration retrieval accuracy. A comparison to US National Ice Center sea ice charts from the Arctic and the Antarctic shows that ice concentrations are higher in the ice charts than estimated from the radiometer data at intermediate sea ice concentrations between open water and 100 % ice. The sea ice concentration climate data record is available for download at www.osi-saf.org, including documentation.


2018 ◽  
Vol 10 (11) ◽  
pp. 1795 ◽  
Author(s):  
Sang-Moo Lee ◽  
Byung-Ju Sohn ◽  
Christian Kummerow

The Arctic sea ice region is the most visible area experiencing global warming-induced climate change. However, long-term measurements of climate-related variables have been limited to a small number of variables such as the sea ice concentration, extent, and area. In this study, we attempt to produce a long-term temperature record for the Arctic sea ice region using Special Sensor for Microwave Imager (SSM/I) Fundamental Climate Data Record (FCDR) data. For that, we developed an algorithm to retrieve the wintertime snow/ice interface temperature (SIIT) over the Arctic Ocean by counting the effect of the snow/ice volume scattering and ice surface roughness on the apparent emissivity (the total effect is referred to as the correction factor). A regression equation was devised to predict the correction factor from SSM/I brightness temperatures (TBs) only and then applied to SSM/I 19.4 GHz TB to estimate the SIIT. The obtained temperatures were validated against collocated Cold Regions Research and Engineering Laboratory (CRREL) ice mass balance (IMB) drifting buoy-measured temperatures at zero ice depth. It is shown that the SSM/I retrievals are in good agreement with the drifting buoy measurements, with a correlation coefficient of 0.95, bias of 0.1 K, and root-mean-square error of 1.48 K on a daily time scale. By applying the algorithm to 24-year (1988–2011) SSM/I FCDR data, we were able to produce the winter-time temperature at the sea ice surface for the 24-year period.


2021 ◽  
Vol 9 (7) ◽  
pp. 728
Author(s):  
Min Ji ◽  
Guochong Liu ◽  
Yawen He ◽  
Ying Li ◽  
Ting Li

The ablation of Arctic sea ice makes seasonal navigation possible in the Arctic region, which accounted for the apparent influence of sea ice concentration in the navigation of the Arctic route. This paper uses Arctic sea ice concentration daily data from January 1, 2000, to December 31, 2019. We used a sea ice concentration threshold value of 40% to define the time window for navigating through the Arctic Northeast Passage (NEP). In addition, for the year when the navigation time of the NEP is relatively abnormal, we combined with wind field, temperature, temperature anomaly, sea ice age and sea ice movement data to analyze the sea ice conditions of the NEP and obtain the main factors affecting the navigation of the NEP. The results reveal the following: (1) The sea ice concentration of the NEP varies greatly seasonally. The best month for navigation is September. The opening time of the NEP varies from late July to early September, the end of navigation is concentrated in mid-October, and the navigation time is basically maintained at more than 30 days. (2) The NEP was not navigable in 2000, 2001, 2003 and 2004. The main factors are the high amount of multi-year ice, low temperature and the wind field blowing towards the Vilkitsky Strait and sea ice movement. The navigation time in 2012, 2015 and 2019 was longer, and the driving factors were the high temperature, weak wind and low amount of one-year ice. The navigation time in 2003, 2007 and 2013 was shorter, and the influencing factors were the strong wind field blowing towards the Vilkitsky Strait. (3) The key navigable areas of the NEP are the central part of the East Siberian Sea and the Vilkitsky Strait, and the Vilkitsky Strait has a greater impact on the NEP than the central part of the East Siberian Sea. The main reason for the high concentration of sea ice in the central part of the East Siberian Sea (2000 and 2001) was the large amount of multi-year ice. The main reason for the high concentration of sea ice in the Vilkitsky Strait (2000 to 2004 and 2007, 2013) was the strong offshore wind in summer, all of which were above 4 m s−1, pushing the sea ice near the Vilkitsky Strait to accumulate in the strait, thus affecting the opening of the NEP.


2021 ◽  
Author(s):  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Helge F. Goessling ◽  
Stefan Hendricks ◽  
Bennet Juhls ◽  
...  

Abstract. We combine satellite data products to provide a first and general overview of the sea-ice conditions along the MOSAiC drift and a comparison with previous years. We find that the MOSAiC drift was around 25 % faster than the climatological mean drift, as a consequence of large-scale low-pressure anomalies prevailing around the Barents-Kara-Laptev Sea region between January and March. In winter (October–April), satellite observations show that the sea-ice in the vicinity of the Central Observatory (CO) was rather thin compared to the previous years along the same trajectory. Unlike ice thickness, satellite-derived sea-ice concentration, lead frequency, and snow thickness during winter month were close to the long-term mean with little variability. With the onset of spring and decreasing distance to Fram Strait, variability in ice concentration and lead activity increased. In addition, frequency and strength of deformation events (divergence and shear) were higher during summer than during winter. Overall, we find that sea-ice conditions observed close (~ 5 km) to the CO are representative for the wider (50 km and 100 km) surroundings. An exception is the ice thickness: Here we find that sea-ice near the CO (50 km radius) was 4 % thinner than sea-ice within a 100 km radius. Moreover, satellite acquisitions indicate that the formation of large melt ponds began earlier on the MOSAiC floe than on neighbouring floes.


Sign in / Sign up

Export Citation Format

Share Document