ecological isolation
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 12)

H-INDEX

18
(FIVE YEARS 1)

Polar Biology ◽  
2021 ◽  
Author(s):  
Halina Galera ◽  
Anna Znój ◽  
Katarzyna J. Chwedorzewska ◽  
Maciej Wódkiewicz

AbstractFrom 2014 to 2018, we performed three on-site eradication actions of Poa annua occurring on King George Island. We aimed at (1) assessing the population response to eradication efforts, (2) evaluating the campaign success, and (3) identifying the most important factors likely to influence eradication success. The first partial eradication action reduced the initial population of around 1500 tussocks to around 1100 tussocks with less than 4 m2 canopy area. In treated locations, we observed high re-establishment where no soil removal was performed, while only a marginal recruitment where plants were removed with associated soil. In the 2017/2018 season, we recorded over 1800 tussocks, which all were subsequently removed. Performing eradication according to the prescribed scheme (plant and soil removal) should result in eradication success. We evaluate that the probability of successful eradication of the population is high because of small size and number of separate infestation sites, complete spatial and ecological isolation of infestation, high accessibility of target population, and well-known current location of infestation sites. The factors which reduce the likelihood of eradication success are long reaction time, high adaptation of the species to new environmental conditions, and high propagule longevity. Reinvasion possibility and frequent personnel changes in the eradication team resulting in varying levels of personnel awareness and experience may also negatively influence eradication success. An invasion, not managed for many years, may still be targeted, but its successful eradication depends on the “human factor”, which may drive the success of the action in opposing directions.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Haoran Gu ◽  
Yuanfu Wang ◽  
Haoyu Wang ◽  
You He ◽  
Sihong Deng ◽  
...  

Abstract Background Postzygote isolation is an important part of species isolation, especially for fish, and it can be divided into two aspects: genetic isolation and ecological isolation. With the increase in parental genetic distance, the intensity of genetic isolation between them also increases. Will the increase in parental ecological niche differences also lead to the increase in ecological isolation intensity between them? This question is difficult to answer based on the current literature due to the lack of hybridization cases of contrasting ecological niche parents. Results Cyprinid fish parents (Schizothorax wangchiachii and Percocypris pingi) with contrasting ecological niches (herbivorous and carnivorous) and their F1 hybrids were used as research objects. Fish and periphytic algae were selected as food corresponding to different parental resources. The foraging-related traits of these hybrids are generally the same between parents; however, the intermediate foraging traits of hybrids did not result in intermediate foraging performance for parental resources, and these hybrids could hardly forage for parental resources. The poor foraging performance of these hybrids for parental resources was caused not only by the decline in the foraging ability of these hybrids but, more importantly, by the decrease in foraging activity. Interestingly, these hybrids initially showed a high interest in foraging small fishes; however, after the first successful capture, these hybrids had difficulty ingesting fish and spit them out, which led to the subsequent decrease in foraging activity. We designed a series of experiments to explore the mechanism of the fish spitting of these hybrids, excluding the taste and the size of prey, and found that the decrease in their pharyngeal tooth puncture ability may be the reason. Conclusions This study was the first to demonstrate that these parents with contrasting ecological niches will produce great postzygotic ecological isolation for parental resources. The poor foraging performance of these hybrids for parental resources is mainly due to the decrease in foraging activity. Interestingly, these hybrids have obvious fish-spitting behaviour, which is a typical example of the incompatibility between intermediate traits and genetic behaviors.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 138
Author(s):  
Jong Myong Park ◽  
Bomi Kim ◽  
Young-Chang Cho ◽  
Byoung-Hee Lee ◽  
Ji Won Hong ◽  
...  

Fungal communities in the rhizoplane (RP) and rhizosphere (RS) of geographically isolated C. takesimana habitats in different environments such as oceanic (Seodo, the Dokdo Islands), coastline (Sadong, Ulleungdo Island), and inland (Taeha, Ulleungdo Island) regions were analyzed by MiSeq sequencing. In total, 1279 operational taxonomic units (OTUs) were obtained and they were further classified into 185 genera belonging to five phyla. The total number of fungal taxa in the RP samples was lower than those in the RS samples in all the sampled locations, providing an indication of the existence of a certain level of the selective pressures from the host plant. The richness of the RP in the Dokdo Islands was higher than that of Ulleungdo Island, but the richness of the RS in the Dokdo Islands was lower than that of Ulleungdo Island. These results suggest evidence for strong effects of a harsh geo-climate on the RP and RS fungal diversities in the Dokdo Islands. Additionally, a total of 82 fungal genera were identified in all three RP samples and 63 genera (77%) were uniquely found in each of the geographical regions and 43 genera (52.4%) showed high dependency on the C. takesimana vegetation. It was found that the genus Mortierella was the most dominant taxon in all the samples. The geo-ecological isolation of the Korean bellflower may have caused unique formation of the RP and RS fungal communities in the natural habitats.


Heredity ◽  
2021 ◽  
Author(s):  
B. Antunes ◽  
G. Velo-Antón ◽  
D. Buckley ◽  
R. J. Pereira ◽  
I. Martínez-Solano

2021 ◽  
Author(s):  
Haoran Gu ◽  
Yuanfu Wang ◽  
Haoyu Wang ◽  
You He ◽  
Sihong Deng ◽  
...  

Abstract Background: Postzygote isolation is an important part of species isolation, especially for fish, and it can be divided into two aspects: genetic isolation and ecological isolation. With the increase in parental genetic distance, the intensity of genetic isolation between them also increases. Will the increase in parental ecological niche differences also lead to the increase in ecological isolation intensity between them? This question is difficult to answer based on the current literature due to the lack of hybridization cases of extreme ecological niche parents.Results: Cyprinidae fish parents (Schizothorax wangchiachii and Percocypris pingi) with extreme ecological niches (herbivorous and carnivorous) and their F1 hybrids were used as research objects. Fish and periphytic algae were selected as food corresponding to different parental resources. The foraging-related traits of these hybrids are generally the same between parents; however, the intermediate foraging traits of hybrids did not result in intermediate foraging performance for parental resources, and these hybrids could hardly forage for parental resources. The poor foraging performance of these hybrids for parental resources was caused not only by the decline in the foraging ability of these hybrids but, more importantly, by the decrease in foraging activity. Interestingly, these hybrids initially showed a high interest in foraging small fishes; however, after the first successful capture, these hybrids had difficulty ingesting fish and spit them out, which led to the subsequent decrease in foraging activity. We designed a series of experiments to explore the mechanism of the fish spitting of these hybrids, excluding the taste and the size of prey, and found that the decrease in their pharyngeal tooth puncture ability may be the reason. Conclusions: This study was the first to demonstrate that these parents with extreme niche differences will produce extreme postzygotic ecological isolation for parental resources. The poor foraging performance of these hybrids for parental resources is mainly due to the decrease in foraging activity. Interestingly, these hybrids have obvious fish-spitting behaviour, which is a typical example of the contradiction between intermediate traits and parental resources.


Author(s):  
А. К. Kimeklis ◽  
Т. S. Aksenova ◽  
G. V. Gladkov ◽  
I. G. Kuznetsova ◽  
А. L. Sazanova ◽  
...  

Ecological isolation, group separation of hkg and sym genes, along with the results of the sterile tube test demonstrate that symbionts of V. formosa belong to R. leguminosarum bv. viciae species, but form a separate group within it.


2020 ◽  
Vol 37 (12) ◽  
pp. 3469-3484
Author(s):  
Corinna Breusing ◽  
Shannon B Johnson ◽  
Verena Tunnicliffe ◽  
David A Clague ◽  
Robert C Vrijenhoek ◽  
...  

Abstract Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.


Zootaxa ◽  
2020 ◽  
Vol 4786 (2) ◽  
pp. 289-294
Author(s):  
TIMOTHY J. COLSTON ◽  
BRICE P. NOONAN ◽  
MEGAN L. SMITH ◽  
R. ALEXANDER PYRON

Frogs of the genus Ptychadena (Boulenger, 1917) have long been identified as harboring cryptic diversity and comprising numerous species-complexes (Largen 1997; Zimkus et al. 2017), and many authors have recognized the particularly high hidden richness in the Ethiopian highlands (Largen 1997; see Largen & Spawls 2010 and refs. within). This cryptic diversity was confirmed by recent molecular studies (Freilich et al. 2014; Smith et al. 2017a, Reyes-Velasco et al. 2018). Those authors identified a congruent set of evolutionarily distinct candidate species using both mitochondrial and nuclear DNA, and described the geographic and ecological isolation of these species in detail (Freilich et al. 2014; Smith et al. 2017a). 


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 991 ◽  
Author(s):  
Anastasiia K. Kimeklis ◽  
Elizaveta R. Chirak ◽  
Irina G. Kuznetsova ◽  
Anna L. Sazanova ◽  
Vera I. Safronova ◽  
...  

Twenty-two rhizobia strains isolated from three distinct populations (North Ossetia, Dagestan, and Armenia) of a relict legume Vavilovia formosa were analysed to determine their position within Rhizobium leguminosarum biovar viciae (Rlv). These bacteria are described as symbionts of four plant genera Pisum, Vicia, Lathyrus, and Lens from the Fabeae tribe, of which Vavilovia is considered to be closest to its last common ancestor (LCA). In contrast to biovar viciae, bacteria from Rhizobium leguminosarum biovar trifolii (Rlt) inoculate plants from the Trifolieae tribe. Comparison of house-keeping (hkg: 16S rRNA, glnII, gltA, and dnaK) and symbiotic (sym: nodA, nodC, nodD, and nifH) genes of the symbionts of V. formosa with those of other Rlv and Rlt strains reveals a significant group separation, which was most pronounced for sym genes. A remarkable feature of the strains isolated from V. formosa was the presence of the nodX gene, which was commonly found in Rlv strains isolated from Afghanistan pea genotypes. Tube testing of different strains on nine plant species, including all genera from the Fabeae tribe, demonstrated that the strains from V. formosa nodulated the same cross inoculation group as the other Rlv strains. Comparison of nucleotide similarity in sym genes suggested that their diversification within sym-biotypes of Rlv was elicited by host plants. Contrariwise, that of hkg genes could be caused by either local adaptation to soil niches or by genetic drift. Long-term ecological isolation, genetic separation, and the ancestral position of V. formosa suggested that symbionts of V. formosa could be responsible for preserving ancestral genotypes of the Rlv biovar.


Author(s):  
Ambre Ribardière ◽  
Elsa Pabion ◽  
Jérôme Coudret ◽  
Claire Daguin‐Thiébaut ◽  
Céline Houbin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document