tea saponin
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 5)

Author(s):  
Shouke Zhang ◽  
Junqia Kong ◽  
Longfei Chen ◽  
Kai Guo ◽  
Xudong Zhou

Plant secondary metabolites (PSMs) contained in plant litter will be released into soil with the decomposition process, which will affect the diversity and function of soil microbiomes. The response of soil microbiomes to PSMs in terms of diversity and function can provide an important theoretical basis for plantations to put forward rational soil ecological management measures.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7464
Author(s):  
Liya Zeng ◽  
Yongchang Liu ◽  
Zhihui Yuan ◽  
Zhe Wang

The purpose of this work was to evaluate the possibility of adding tea saponin (TS) to reduce the synthetic surfactant concentration, and maintain or improve the shelf stability of nanoemulsions. The Zanthoxylum bungeanum essential oil (2.5 wt%) loaded oil-in-water nanoemulsions were co-stabilized by Tween 40 (0.5–2.5 wt%) and TS (0.1–5 wt%). A combination of several analytical techniques, such as dynamic laser scattering, interfacial tension, zeta potential, and transmission electron microscope, were used for the characterization of nanoemulsions. Low levels of TS (0.1–0.5 wt%) with Tween 40 had significant effects on the emulsification, and a nanoemulsion with the smallest droplet diameter of 89.63 ± 0.67 nm was obtained. However, in the presence of high TS concentration (0.5–5 wt%), micelles generated by the non-adsorbed surfactants in the aqueous lead to droplets growth. In addition, the combinations of Tween 40 and TS at the high level (>3.5 wt%) exerted a synergistic effect on stabilizing the nanoemulsions and preventing both Ostwald ripening and coalescence. The negative charged TS endowed the droplets with electrostatic repulsion and steric hinderance appeared to prevent flocculation and coalescence. These results would provide a potential application of natural TS in the preparation and stabilization of nanoemulsions containing essential oil.


2021 ◽  
Author(s):  
Shouke Zhang ◽  
Junqia Kong ◽  
Zikun Li ◽  
Feng Song ◽  
Xinhua He ◽  
...  

Abstract Background Plant secondary metabolites (PSMs) can affect the structures and functions of soil microbiomes. However, the core bacteria associated with PSMs, and their corresponding functions have not been explored extensively. In this study, soil physicochemical properties, tea saponin contents, microbial community compositions, and microbial community functions of different-age Camellia oleifera plantation soils from representative regions were analyzed. We evaluated the effects of plantation age increase on PSM accumulation, and the subsequent consequences on the structures and functions of soil microbiomes. Results Plantation ages increase positively corresponded with accumulated tea saponin contents, with negative effects on soil physicochemical properties, and soil microbiome structures and functions. Older plantation soil microbiomes exhibited simpler structures, lower diversity, and relatively looser putative interactions based on network analysis. Clearly, the core functions of soil microbiomes transitioned to those associated with PSM metabolisms, while microbial pathways involved in cellulose degradation were inhibited. Degradation experiments further confirmed that older plantation soils exhibited the higher capacity on tea saponin degradation but poorer on furfural. Conclusions This study systematically explored the influences of PSMs on soil microbiomes via the investigation of key bacterial populations and their functional pathways. With the increase of planting years, increased tea saponin content simplified the soil microbiomes diversity, inhibited the degradation of organic matter, and enriched the genes related to the degradation of tea saponin. These findings significantly advance our understanding on PSMs-microbiome interactions and could provide fundamental and important data for sustainable management of Camellia plantations.


Toxin Reviews ◽  
2021 ◽  
pp. 1-9
Author(s):  
Morteza Shahriari ◽  
Arash Zibaee ◽  
Seyyedeh Kimia Mirhaghparast ◽  
Sarah Aghaeepour Pour ◽  
Samar Ramzi ◽  
...  

2021 ◽  
Vol 36 (4) ◽  
pp. 546-556
Author(s):  
Zhijin Zou ◽  
Yunlong Li ◽  
Zhengwei Ma ◽  
Yanqiao Jin ◽  
Qiufeng Lü
Keyword(s):  
Low Cost ◽  

2021 ◽  
pp. 130401
Author(s):  
Yongkai Yuan ◽  
Junzi Xiao ◽  
Peiyao Zhang ◽  
Mengjie Ma ◽  
Dongfeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document