step effect
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
pp. 2107249
Author(s):  
Yu Zhang ◽  
Lei Wu ◽  
Miaomiao Zou ◽  
Lidian Zhang ◽  
Yanlin Song
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaofeng Yang

The noise pollution in tourist street view images is caused by various reasons. A major challenge that researchers have been facing is to find a way to effectively remove noise. Although in the past few decades people have proposed many methods of denoising tourist street scene images, the research on denoising technology of tourist street scene images is still not outdated. There is no doubt that it has become a basic and important research topic in the field of digital image processing. The evolutionary diffusion method based on partial differential equations is helpful to improve the quality of noisy tourist street scene images. This method can process tourist street scene images according to people’s expected diffusion behavior. The adaptive total variation model proposed in this paper is improved on the basis of the total variation model and the Gaussian thermal diffusion model. We analyze the classic variational PDE-based denoising model and get a unified variational PDE energy functional model. We also give a detailed analysis of the diffusion performance of the total variational model and then propose an adaptive total variational diffusion model. By improving the diffusion coefficient and introducing a curvature operator that can distinguish details such as edges, it can effectively denoise the tourist street scene image, and it also has a good effect on avoiding the step effect. Through the improvement of the ROF model, the loyalty term and regular term of the model are parameterized, the adaptive total variation denoising model of this paper is established, and a detailed analysis is carried out. The experimental results show that compared with some traditional denoising models, the model in this paper can effectively suppress the step effect in the denoising process, while protecting the texture details of the edge area of the tourist street scene image. In addition, the model in this paper is superior to traditional denoising models in terms of denoising performance and texture structure protection.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 261
Author(s):  
Deniz Ertuncay ◽  
Petra Malisan ◽  
Giovanni Costa ◽  
Stefano Grimaz

Near fault seismic records may contain impulsive motions in velocity-time history. The seismic records can be identified as impulsive and non-impulsive depending on the features that their waveforms have. These motions can be an indicator of directivity or fling step effect, and they may cause dangerous effects on structures; for this reason, there is increasing attention on this subject in the last years. In this study, we collect the major earthquakes in Italy, with a magnitude large or equal to Mw 5.0, and identify the impulsive motions recorded by seismic stations. We correlate impulsive motions with directivity and fling step effects. We find that most earthquakes produced impulsive signals due to the directivity effect, though those at close stations to the 30 October 2016 Amatrice earthquake might be generated by the fling step effect. Starting from the analyzed impulses, we discuss on the potential influence of site effects on impulsive signals and suggest a characterization based on the main displacement directions of the impulsive horizontal displacements. Finally, we discuss on the damage of three churches in Emilia, which were subject to impulsive ground motion, underlying in a qualitative way, how the characteristics of the pulses may have had influences the structural response of the façades.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Bo Chen ◽  
Yan Lv ◽  
Jinbin Zou ◽  
Wensheng Chen ◽  
Binbin Pan

Speckle noise removal in medical ultrasound images is a challenging task. In this paper, a new model is proposed to removal speckle noise, alternating direction method of multipliers algorithm is employed to solve the new energy minimization model. The convexity, existence, and uniqueness of the new energy minimization model’s solution are proved. Series of experiments are designed in this paper. Numerical results show that the new algorithm can reduce the step effect effectively obtain good results in visual effect and quantitative measures by comparing with some traditional models.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092167 ◽  
Author(s):  
Hui-hong Xu ◽  
Dong-yuan Ge

In the field of visual perception, the edges of images tend to be rich in effective visual stimuli, which contribute to the neural network’s understanding of various scenes. Image smoothing is an image processing method used to highlight the wide area, low-frequency components, main part of the image or to suppress image noise and high-frequency interference components, which could make the image’s brightness smooth and gradual, reduce the abrupt gradient, and improve the image quality. At present, there are still problems such as easy blurring of the edges of the image, poor overall smoothing effect, obvious step effect, and lack of robustness to noise on image smoothing. Based on the convolutional neural network, this article proposes a method for edge detection and deep learning for image smoothing. The results show that the research method proposed in this article solves the problem of edge detection and information capture better, significantly improves the edge effect, and protects the effectiveness of edge information. At the same time, it reduces the signal-to-noise ratio of the smoothed image and greatly improves the effect of image smoothing.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 335 ◽  
Author(s):  
Bin Xu ◽  
Kang Guo ◽  
Likuan Zhu ◽  
Xiaoyu Wu ◽  
Jianguo Lei

When using foil queue microelectrodes (FQ-microelectrodes) for micro electrical discharge machining (micro-EDM), the processed results of each foil microelectrode (F-microelectrode) can be stacked to construct three-dimensional (3D) microstructures. However, the surface of the 3D microstructure obtained from this process will have a step effect, which has an adverse effect on the surface quality and shape accuracy of the 3D microstructures. To focus on this problem, this paper proposes to use FQ-microelectrodes with tapered structures for micro-EDM, thereby eliminating the step effect on the 3D microstructure’s surface. By using a low-speed wire EDM machine, a copper foil with thickness of 300 μm was processed to obtain a FQ-microelectrode in which each of the F-microelectrodes has a tapered structure along its thickness direction. These tapered structures could effectively improve the construction precision of the 3D microstructure and effectively eliminate the step effect. In this paper, the effects of the taper angle and the number of microelectrodes on the step effect were investigated. The experimental results show that the step effect on the 3D microstructure’s surface became less evident with the taper angle and the number of F-microelectrodes increased. Finally, under the processing voltage of 120 V, pulse width of 1 μs and pulse interval of 10 μs, a FQ-microelectrode (including 40 F-microelectrodes) with 10° taper angle was used for micro-EDM. The obtained 3D microstructure has good surface quality and the step effect was essentially eliminated.


Sign in / Sign up

Export Citation Format

Share Document