DSMC investigation of rarefied gas flow over a 2D forward-facing step: Effect of Knudsen number

2021 ◽  
Vol 178 ◽  
pp. 89-109 ◽  
Author(s):  
Deepak Nabapure ◽  
Ram Chandra Murthy K.
Author(s):  
Vladan D. Djordjevic

Rarefied gas flow in a pipe is treated in the paper by modeling the slip boundary condition by means of a fractional derivative. At that the order of the derivative is conveniently chosen to be a function of the average value of the Knudsen number so that the entire Knudsen number range, from continuum flow to free molecular flow, is covered. Very good agreement with the solutions of linearized Boltzmann equation is achieved. The paper represents a natural extension of the work of the same author on the rarefied micro channel flow, published earlier.


1984 ◽  
Vol 106 (4) ◽  
pp. 367-373 ◽  
Author(s):  
Tetsuo Fujimoto ◽  
Masaru Usami

Rarefied gas flow through a circular orifice and short tubes has been investigated experimentally, and the conductance of the aperture has been calculated for Knudsen number between 2 × 10−4 and 50. The unsteady approach was adopted, in which the decay of pressure in an upstream chamber was measured as a function of time. For flow with high pressure ratio, empirical equations of the conductance are proposed as a function of Reynolds number, or Knudsen number, and length-to-diameter ratio of the apertures.


2012 ◽  
Vol 694 ◽  
pp. 191-224 ◽  
Author(s):  
Satoshi Taguchi ◽  
Kazuo Aoki

AbstractA rarefied gas flow thermally induced around a heated (or cooled) flat plate, contained in a vessel, is considered in two different situations: (i) both sides of the plate are simultaneously and uniformly heated (or cooled); and (ii) only one side of the plate is uniformly heated. The former is known as the thermal edge flow and the latter, typically observed in the Crookes radiometer, may be called the radiometric flow. The steady behaviour of the gas induced in the container is investigated on the basis of the Bhatnagar–Gross–Krook (BGK) model of the Boltzmann equation and the diffuse reflection boundary condition by means of an accurate finite-difference method. The flow features are clarified for a wide range of the Knudsen number, with a particular emphasis placed on the structural similarity between the two flows. The limiting behaviour of the flow as the Knudsen number tends to zero (and thus the system approaches the continuum limit) is investigated for both flows. The detailed structure of the normal stress on the plate as well as the cause of the radiometric force (the force acting on the plate from the hotter to the colder side) is also clarified for the present infinitely thin plate.


Author(s):  
Masoud Darbandi ◽  
Ghasem Mosayebi

As the use of MEMS-based devices and systems are continuously increasing, the understanding of their correct characteristics becomes so serious for the related researches. In this study, the supersonic rarefied gas flow over microscale hotwires is investigated using the Direct Simulation Monte Carlo (DSMC) method. Indeed, the DSMC has been accepted as a powerful method to study the rarefied gas flow especially in transitional regime. Therefore, it can be considered as a reliable method to investigate the rarefied supersonic flow over microscale objects including the microscale hotwires. In this work, we study the effective parameters, which affect the performance of these sensors at constant sensor surface temperature conditions. We use our developed DSMC code to perform our investigation. This code uses the DSMC algorithm to solve the rarefied gas flow on unstructured grid distributions. To validate our developed DSMC code, we solve the supersonic rarefied gas flow and heat transfer in microchannel considering different Knudsen number magnitudes. Comparing the achieved flow and heat transfer solutions with other available results and data reported on microchannel studies, we verify the accuracy of achieved results. Next we focus on hotwire sensor, which often consists of the combinations of different long narrow circular cylinders. We study the effects of grid resolution, time step size, and the number of simulated particles on the obtained results. We further study the effects of sensor temperature and sensor diameter on the sensor thermal performance. The achieved results indicate that the surface heat flux performs very similarly in different studied cases. For example, the achieved local Nusselt number distributions around the circular sensor show that the surface heat flux would gradually increase from the sensor stagnation point to its rear end as the temperature gradient increases. It reaches to a maximum magnitude and it then starts decreasing resulting in effective heat flux reduction. Finally, there is a low pressure zone at the rear side of cylinder, which is not considerably affected by the flow properties. The results also show that if the wire surface temperature increases, the Nusselt number would reduce. However, the amount of Nusselt Number reduction rate would decrease as the temperature increases. Furthermore, the results show that the Reynolds number decreases and the Knudsen number increases as the sensor diameter decreases, which is due to the transitional regime behavior. As is known, the flow at boundaries change the condition from the slip to transitional regime when the Knudsen number increases sufficiently; and the flow become rarefied. There is a reduction in the total heat flux rate as the sensor diameter is reduced.


Sign in / Sign up

Export Citation Format

Share Document