geometric consistency
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 32)

H-INDEX

13
(FIVE YEARS 4)

Author(s):  
Xiang Li ◽  
Guowei Teng ◽  
Ping An ◽  
Hai-Yan Yao

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4860
Author(s):  
Zichao Shu ◽  
Songxiao Cao ◽  
Qing Jiang ◽  
Zhipeng Xu ◽  
Jianbin Tang ◽  
...  

In this paper, an optimized three-dimensional (3D) pairwise point cloud registration algorithm is proposed, which is used for flatness measurement based on a laser profilometer. The objective is to achieve a fast and accurate six-degrees-of-freedom (6-DoF) pose estimation of a large-scale planar point cloud to ensure that the flatness measurement is precise. To that end, the proposed algorithm extracts the boundary of the point cloud to obtain more effective feature descriptors of the keypoints. Then, it eliminates the invalid keypoints by neighborhood evaluation to obtain the initial matching point pairs. Thereafter, clustering combined with the geometric consistency constraints of correspondences is conducted to realize coarse registration. Finally, the iterative closest point (ICP) algorithm is used to complete fine registration based on the boundary point cloud. The experimental results demonstrate that the proposed algorithm is superior to the current algorithms in terms of boundary extraction and registration performance.


2021 ◽  
Vol 13 (12) ◽  
pp. 2340
Author(s):  
Teng Xiao ◽  
Qingsong Yan ◽  
Weile Ma ◽  
Fei Deng

Structure from motion (SfM) has been treated as a mature technique to carry out the task of image orientation and 3D reconstruction. However, it is an ongoing challenge to obtain correct reconstruction results from image sets consisting of problematic match pairs. This paper investigated two types of problematic match pairs, stemming from repetitive structures and very short baselines. We built a weighted view-graph based on all potential match pairs and propose a progressive SfM method (PRMP-PSfM) that iteratively prioritizes and refines its match pairs (or edges). The method has two main steps: initialization and expansion. Initialization is developed for reliable seed reconstruction. Specifically, we prioritize a subset of match pairs by the union of multiple independent minimum spanning trees and refine them by the idea of cycle consistency inference (CCI), which aims to infer incorrect edges by analyzing the geometric consistency over cycles of the view-graph. The seed reconstruction is progressively expanded by iteratively adding new minimum spanning trees and refining the corresponding match pairs, and the expansion terminates when a certain completeness of the block is achieved. Results from evaluations on several public datasets demonstrate that PRMP-PSfM can successfully accomplish the image orientation task for datasets with repetitive structures and very short baselines and can obtain better or similar accuracy of reconstruction results compared to several state-of-the-art incremental and hierarchical SfM methods.


Author(s):  
Eloy Peña-Asensio ◽  
Josep Maria Trigo-Rodríguez ◽  
Maria Gritsevich ◽  
Albert Rimola

Abstract The disruption of asteroids and comets produces cm-sized meteoroids that end up impacting the Earth’s atmosphere and producing bright fireballs that might have associated shock waves or, in geometrically-favorable occasions excavate craters that put them into unexpected hazardous scenarios. The astrometric reduction of meteors and fireballs to infer their atmospheric trajectories and heliocentric orbits involves a complex and tedious process that generally requires many manual tasks. To streamline the process, we present a software package called SPMN 3D Fireball Trajectory and Orbit Calculator (3D-FireTOC), an automatic Python code for detection, trajectory reconstruction of meteors, and heliocentric orbit computation from video recordings. The automatic 3D-FireTOC package comprises of a user interface and a graphic engine that generates a realistic 3D representation model, which allows users to easily check the geometric consistency of the results and facilitates scientiï¬c content production for dissemination. The software automatically detects meteors from digital systems, completes the astrometric measurements, performs photometry, computes the meteor atmospheric trajectory, calculates the velocity curve, and obtains the radiant and the heliocentric orbit, all in all quantifying the error measurements in each step. The software applies corrections such as light aberration, refraction, zenith attraction, diurnal aberration and atmospheric extinction. It also characterizes the atmospheric flight and consequently determines fireball fates by using the α − β criterion that analyses the ability of a fireball to penetrate deep into the atmosphere and produce meteorites. We demonstrate the performance of the software by analyzing two bright fireballs recorded by the Spanish Fireball and Meteorite Network (SPMN).


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2431
Author(s):  
Yongjian Fu ◽  
Zongchun Li ◽  
Wenqi Wang ◽  
Hua He ◽  
Feng Xiong ◽  
...  

To overcome the drawbacks of pairwise registration for mobile laser scanner (MLS) point clouds, such as difficulty in searching the corresponding points and inaccuracy registration matrix, a robust coarse-to-fine registration method is proposed to align different frames of MLS point clouds into a common coordinate system. The method identifies the correct corresponding point pairs from the source and target point clouds, and then calculates the transform matrix. First, the performance of a multiscale eigenvalue statistic-based descriptor with different combinations of parameters is evaluated to identify the optimal combination. Second, based on the geometric distribution of points in the neighborhood of the keypoint, a weighted covariance matrix is constructed, by which the multiscale eigenvalues are calculated as the feature description language. Third, the corresponding points between the source and target point clouds are estimated in the feature space, and the incorrect ones are eliminated via a geometric consistency constraint. Finally, the estimated corresponding point pairs are used for coarse registration. The value of coarse registration is regarded as the initial value for the iterative closest point algorithm. Subsequently, the final fine registration result is obtained. The results of the registration experiments with Autonomous Systems Lab (ASL) Datasets show that the proposed method can accurately align MLS point clouds in different frames and outperform the comparative methods.


2021 ◽  
Vol 13 (3) ◽  
pp. 490
Author(s):  
Yongfei Li ◽  
Shicheng Wang ◽  
Hao He ◽  
Deyu Meng ◽  
Dongfang Yang

We address the problem of aerial image geolocalization over an area as large as a whole city through road network matching, which is modeled as a 2D point set registration problem under the 2D projective transformation and solved in a two-stage manner. In the first stage, all the potential transformations aligning the query road point set to the reference road point set are found by local point feature matching. A local geometric feature, called the Projective-Invariant Contour Feature (PICF), which consists of a road intersection and the closest points to it in each direction, is specifically designed. We prove that the proposed PICF is equivariant under the 2D projective transformation group. We then encode the PICF with a projective-invariant descriptor to enable the fast search of potential correspondences. The bad correspondences are then removed by a geometric consistency check with the graph-cut algorithm effectively. In the second stage, a flexible strategy is developed to recover the homography transformation with all the PICF correspondences with the Random Sample Consensus (RANSAC) method or to recover the transformation with only one correspondence and then refine it with the local-to-global Iterative Closest Point (ICP) algorithm when only a few correspondences exist. The strategy makes our method efficient to deal with both scenes where roads are sparse and scenes where roads are dense. The refined transformations are then verified with alignment accuracy to determine whether they are accepted as correct. Experimental results show that our method runs faster and greatly improves the recall compared with the state-of-the-art methods.


Sign in / Sign up

Export Citation Format

Share Document