occupational dose
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 19 (4) ◽  
pp. 1015-1023
Author(s):  
I.K. Hasan Basri ◽  
S. Barnard ◽  
V.A. Suvivan ◽  
T. Rahardjo ◽  
S. Nurhayati ◽  
...  

2021 ◽  
pp. 219256822110394
Author(s):  
Jan-Helge Klingler ◽  
Ulrich Hubbe ◽  
Christoph Scholz ◽  
Florian Volz ◽  
Roland Roelz ◽  
...  

Study Design: Prospective cohort study. Objectives: The purpose of this prospective study was to evaluate a protocol for radiation-sparing kyphoplasty by assessing dosemetrically recorded radiation exposures to both patient and surgeon. Methods: This prospective clinical study examines the radiation exposure to patient and surgeon during single-level kyphoplasty in 32 thoracolumbar osteoporotic vertebral body fractures (12 OF 2, 9 OF 3, 11 OF 4 types) using a radiation aware surgical protocol between May 2017 and November 2019. The radiation exposure was measured at different locations using film, eye lens and ring dosemeters. Dose values are reported under consideration of lower detection limits of each dosemeter type. Results: A high proportion of dosemeter readings was below the lower detection limits, especially for the surgeon (>90%). Radiation exposure to the surgeon was highest at the unprotected thyroid gland (0.053 ± 0.047 mSv), however only slightly above the lower detection limit of dosemeters (0.044 mSv). Radiation exposure to the patient was highest at the chest (0.349 ± 0.414 mSv) and the gonad (0.186 ± 0.262 mSv). Fluoroscopy time, dose area product and number of fluoroscopic images were 46.0 ± 17.9 sec, 124 ± 109 cGy×cm2, and 35 ± 13 per kyphoplasty, respectively. Back pain significantly improved from 6.8 ± 1.6 to 2.5 ± 1.7 on the numeric rating scale on the first postoperative day ( P < 0.0001). Conclusions: The implementation of a strict intraoperative radiation protection protocol allows for safely performed kyphoplasty with ultra-low radiation exposure for the patient and surgeon without exceeding the annual occupational dose limits. Trial registration: The study was registered in the German Clinical Trials Register (DRKS00011908, registration date 16/05/2017).


Author(s):  
M Senthilkumar ◽  
C Senthil Kumar ◽  
J Koley ◽  
J Velmurugan

Abstract Occupational exposure data in radiation applications provide a good insight on the radiation risks to workers from occupational hazards, the safe practices adopted and in deriving methods to prevent possible radiation exposures. The analysis of occupational exposure may be used to provide regulatory guidance and more focused attention to improve the safety systems, thus improving the personnel and environment safety. In this study, occupational exposure from radiation applications during 2004–18 amounting to a total number of 1951 486 occupational dose data are collected and analysed using the statistical software package, SPSS. As recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation, four critical parameters viz., annual collective effective dose, average annual effective dose, individual dose distribution ratio and the annual collective dose distribution ratio for each practice are estimated. Using the trend observed for these parameters, it is predicted that occupational exposure in diagnostic radiology in the year 2023 would increase by 80% in total number of monitored with 76% increase in average collective dose and no significant change in average annual effective dose. In the same manner, nuclear medicine would see 28% of increase in radiation workers with the increase of 24% in collective dose with no significant change in average annual effective dose. Further, the reasons and area of regulatory focus for the different practices are discussed.


Author(s):  
Younghoon Roh ◽  
Jungsu Kim ◽  
Hyemin Park ◽  
Jungmin Kim ◽  
Dongryeol Ryu ◽  
...  

Cardiac angiography to visualize the cardiac coronary artery for lesions causes a lot of radiation exposure dose to the interventional cardiologist. We evaluated the occupational radiation exposure to the interventional cardiologist based on changes to the angle of the X-ray tube used in cardiac angiography and calculated the conversion factor for effective dose in this study. To evaluate the occupational radiation exposure resulting from scattered radiation to interventional cardiologists, organ doses for eyeball, thyroid, and heart were calculated using Monte Carlo simulation with korean typical man(KTMAN) phantom at the left anterior oblique (LAO)30/cranial (CRAN)30, CRAN40, right anterior oblique (RAO)30/CRAN30, RAO30/caudal(CAUD)20, CAUD39, LAO40/CAUD35, and LAO40 positions in the femoral and the radial artery puncture. In this study, analysis of the different angles showed the highest radiation exposure on LAO30/CRAN30 and CRAN40 position, which were 150.65% and 135.3%, respectively, compared to AP angles. Therefore, to reduce occupational dose for interventional cardiologists, it is recommended that radiation protection, such as using radiation shield and personal protective equipment (PPE), be used at LAO30/CRAN30 and CRAN40 angulation, and the conversion factor for calculating the organ dose received by the interventional cardiologists based on patient dose can be applied for improved occupational dose management.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Chandra R Makanjee ◽  
Erin Lipscombe ◽  
Adrianna Niza Haniz ◽  
Yun Sook Cho

Author(s):  
A Almén ◽  
M Andersson ◽  
U O’Connor ◽  
M Abdelrahman ◽  
A Camp ◽  
...  

Abstract Exposure levels to staff in interventional radiology (IR) may be significant and appropriate assessment of radiation doses is needed. Issues regarding measurements using physical dosemeters in the clinical environment still exist. The objective of this work was to explore the prerequisites for assessing staff radiation dose, based on simulations only. Personal dose equivalent, Hp(10), was assessed using simulations based on Monte Carlo methods. The position of the operator was defined using a 3D motion tracking system. X-ray system exposure parameters were extracted from the x-ray equipment. The methodology was investigated and the simulations compared to measurements during IR procedures. The results indicate that the differences between simulated and measured staff radiation doses, in terms of the personal dose equivalent quantity Hp(10), are in the order of 30–70 %. The results are promising but some issues remain to be solved, e.g. an automated tracking of movable parts such as the ceiling-mounted protection shield.


2021 ◽  
Vol 169 ◽  
pp. 109466
Author(s):  
Wei-Wei Yin ◽  
Xiang-Wu Zheng ◽  
Zhi-Qiang Wang ◽  
Wei-Jian Chen ◽  
Yeu-Sheng Tyan ◽  
...  

2021 ◽  
Author(s):  
N. Shubayr ◽  
Y. Alashban

There has been an increase in the numbers of diagnostic and therapeutic procedures, which, in turn, has increased the occupational radiation doses delivered to healthcare practitioners. The aim of this study is to estimate a baseline for the occupational effective doses for five consecutive years (2016–2020) among nurses working in several medical departments in Saudi Arabia. A total of 3249 nurses were monitored from 2016 to 2020. Occupational effective doses were estimated using thermoluminescent dosimeters (TLD-100 chip) made of lithium fluoride (Li natural) LiF:Mg.Ti materials. An analysis of the dosimetry data revealed that the overall mean annual effective dose (MAED), range of the effective doses and the mean collective effective dose for nurses in selected departments during the study period were 0.85 mSv, 0.06–13.07 mSv and 46.51 man-mSv, respectively. The MAEDs for nurses were obtained from various departments, including the operating room (OR; 0.81 mSv), general X-ray (0.90 mSv), cardiac catheterization laboratory (cath-lab; 0.97 mSv), endoscopy (0.79 mSv), computed tomography (CT; 0.77 mSv), fluoroscopy (0.81 mSv), dentistry (0.92 mSv), angiography (0.91 mSv), nuclear medicine (1.01 mSv), urology (0.68 mSv), radiotherapy (0.67 mSv) and mammography (0.77 mSv). The MAED for cath-lab nurses was significantly higher than that for OR, CT and endoscopy nurses. The occupational doses among nurses in Saudi Arabia were below the recommended dose limit of 20 mSv. However, to further reduce the occupational dose, we recommend training and continuing education in radiation protection for nurses involved in radiological procedures.


Sign in / Sign up

Export Citation Format

Share Document