eshelby inclusion
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
pp. 108128652110454
Author(s):  
Xu Wang ◽  
Peter Schiavone

With the aid of conformal mapping and analytic continuation, we prove that within the framework of anti-plane elasticity, a non-parabolic open elastic inhomogeneity can still admit an internal uniform stress field despite the presence of a nearby non-circular Eshelby inclusion undergoing uniform anti-plane eigenstrains when the surrounding elastic matrix is subjected to uniform remote stresses. The non-circular inclusion can take the form of a Booth’s lemniscate inclusion, a generalized Booth’s lemniscate inclusion or a cardioid inclusion. Our analysis indicates that the uniform stress field within the non-parabolic inhomogeneity is independent of the specific open shape of the inhomogeneity and is also unaffected by the existence of the nearby non-circular inclusion. On the other hand, the non-parabolic shape of the inhomogeneity is caused solely by the presence of the non-circular inclusion.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5811
Author(s):  
Shinji Muraishi

The fine misfit precipitates in age-hardenable aluminum alloys have important roles due to their excellent age-hardening ability, by their interaction with dislocations. The present study focused on the internal stress field of plate-shaped misfitting precipitates to evaluate their roles in dislocation overcoming the precipitates by means of micromechanics based on Green’s function method. The stress field of misfit precipitates on {001} and {111} habit planes were reproduced by homogeneous misfit strain (eigenstrain) of the precipitate (Eshelby inclusion method), and the dislocation motion vector on the primary slip plane was predicted by the force acted on the dislocation by the Peach–Koehler formula. According to simulation results, the dislocation interaction strongly depends on the stress field and geometry of misfit precipitates; repulsive and attractive forces are operated on the dislocations lying on the primary slip plane when the dislocation approaches the misfit precipitates. The hardening ability of different orientations of precipitation variants was discussed in terms of interaction force acted on the dislocation.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Yao Fu ◽  
Xiangning Zhang ◽  
Xiaomin Zhou

Abstract The fluid flow connecting the hydraulic fracture and associated unconventional gas or oil reservoir is of great importance to explore such unconventional resource. The deformation of unconventional reservoir caused by heat transport and pore pressure fluctuation may change the stress field of surrounding layer. In this paper, the stress distribution around a penny-shaped reservoir, whose shape is more versatile to cover a wide variety of special case, is investigated via the numerical equivalent inclusion method. Fluid production or hydraulic injection in a subsurface resource caused by the change of pore pressure and temperature within the reservoir may be simulated with the help of the Eshelby inclusion model. By employing the approach of classical eigenstrain, a computational scheme for solving the disturbance produced by the thermally and pressure induced unconventional reservoir is coded to study the effect of Biot coefficient and some other important factors. Moreover, thermo-poro transformation strain and arbitrarily orientated reservoir existing within the surrounding layer are also considered.


2021 ◽  
Vol 165 ◽  
pp. 103489
Author(s):  
Mohammad A. Kazemi-Lari ◽  
John A. Shaw ◽  
Alan S. Wineman ◽  
Rafael Shimkunas ◽  
Zhong Jian ◽  
...  

2021 ◽  
pp. 108128652110134
Author(s):  
Ping Yang ◽  
Xu Wang ◽  
Peter Schiavone

We establish the uniformity of stresses inside both a non-parabolic open inhomogeneity and a non-elliptical closed inhomogeneity interacting with a nearby circular Eshelby inclusion undergoing uniform anti-plane eigenstrains when the surrounding matrix is subjected to uniform remote anti-plane stresses. Our procedure involves the introduction of a conformal mapping function for the doubly connected domain occupied by the matrix and the circular Eshelby inclusion. Two conditions are established in order to achieve the uniformity property inside each of the two inhomogeneities. Our results indicate that: (a) the internal uniform stresses are independent of the specific shapes of the two inhomogeneities and the existence of the nearby circular Eshelby inclusion; (b) the open and closed shapes of the respective inhomogeneities are significantly affected by the presence of the circular Eshelby inclusion. We also consider the two more complex cases involving: (a) an arbitrary number of circular Eshelby inclusions undergoing uniform eigenstrains; (b) a circular Eshelby inclusion undergoing linear eigenstrains. Detailed numerical results demonstrate the feasibility and effectiveness of the proposed theory.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Xilei Bian ◽  
Daniel Şopu ◽  
Gang Wang ◽  
Baoan Sun ◽  
Jozef Bednarčik ◽  
...  

Abstract The design of ductile heterogeneous metallic glasses (MGs) with enhanced deformability by purposely controlling the shear-band dynamics via modulation of the atomic-scale structures and local stress states remains a significant challenge. Here, we correlate the changes in the local atomic structure when cooling to cryogenic temperature with the observed improved shear stability. The enhanced atomic-level structural and elastic heterogeneities related to the nonaffine thermal contraction of the short-range order (SRO) and medium-range order (MRO) change the characteristics of the activation process of the shear transformation zones (STZs). The experimental observations corroborated by Eshelby inclusion analysis and molecular dynamics simulations disclose the correlation between the structural fluctuations and the change in the stress field around the STZ. The variations in the inclination axes of the STZs alter their percolation mechanism, affect the shear-band dynamics and kinetics, and consequently delay shear failure. These results expand the understanding of the correlation between the atomic-level structure and elementary plastic events in monolithic MGs and thereby pave the way for the design of new ductile metallic alloys.


Sign in / Sign up

Export Citation Format

Share Document