methyl violet 2b
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Luciane Torezan ◽  
Jordana Bortoluz ◽  
Nayrim Brizuela Guerra ◽  
Fabrício Ferrarini ◽  
Luis Rafael Bonetto ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yie Chen Lu ◽  
Muhammad Raziq Rahimi Kooh ◽  
Linda Biaw Leng Lim ◽  
Namal Priyantha

In this study, a simple chemical modification was applied to a sustainable and abundantly available resource, kangkong root (KR), to remove methyl violet 2B (MV) dye. The chemically modified adsorbent (NaOH-KR) was obtained using NaOH solution treatment. Batch adsorption experiments were carried out to investigate the effects of pH, ionic strength, contact time, adsorbent dosage, and initial dye concentration. A regeneration experiment was also carried out to assess the potential of reusability. The adsorption process was modelled using various kinetics and isotherm models, whereby the best-fitting models were evaluated by using the coefficient of determination ( R 2 ) and error functions. The Sips ( R 2 = 0.9714 , χ2 =0.16) and pseudo-second-order ( R 2 = 0.9996 , χ 2 = 0.007 ) models were identified to best represent the adsorption process. The Sips model predicted a maximum adsorption capacity at 551.5 mg g-1 for NaOH-KR, which is 55% improvement in performance when compared to nonmodified KR. Lastly, the regeneration experiment showed that NaOH-KR was able to maintain reasonable dye removal even after five consecutive cycles of regenerating and reusing.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 960 ◽  
Author(s):  
Abdel Majid A. Adam ◽  
Hosam A. Saad ◽  
Ahmed A. Atta ◽  
Mohammed Alsawat ◽  
Mohamed S. Hegab ◽  
...  

Globally, environmental pollution is an important issue. Various pollutants present in water resources, such as bacteria, heavy-metal ions, and organic pollutants, cause serious problems to the environment, animals, plants, and human health. Among the water resources, pollutants, dyestuff, which is discharged from dyeing, textile, and other industrial processes, is an important class of pollutants. Removing these dye pollutants from water resources and wastewater is vital and important due to their toxicity. In this work, a CrFeO3-carbon nanotube (CNT) adsorbent was synthesized using environmentally friendly methods. The synthesized CrFeO3-CNT adsorbent was characterized stoichiometrically, spectroscopically, and morphologically. The synthesized CrFeO3-CNT adsorbent was tested for the removal of two dyes: Methyl violet 2B (MV) and Azocarmine G2 (AC) from an aqueous solution. Crushing CrFeO3 composite with multi-walled fullerene CNT to prepare CrFeO3-CNT adsorbent improved the adsorption performance of free multi-walled fullerene CNT towards MV dye by 30% and towards AC dye by 33.3%.


Chemosphere ◽  
2021 ◽  
pp. 131632
Author(s):  
Rauf Foroutan ◽  
Reza Mohammadi ◽  
Amir Ahmadi ◽  
Gholamreza Bikhabar ◽  
Fatemeh Babaei ◽  
...  

2020 ◽  
Vol 10 (12) ◽  
Author(s):  
Tze Ling Kua ◽  
Muhammad Raziq Rahimi Kooh ◽  
Muhammad Khairud Dahri ◽  
Nur Afiqah Hazirah Mohamad Zaidi ◽  
YieChen Lu ◽  
...  

AbstractIpomoea aquatica (IA) was investigated for its potential as a low-cost adsorbent to remove toxic methyl violet 2B (MV2B) dye in aqueous solutions. Optimising parameters such as the effects of contact time, medium pH and ionic strength (using NaCl, NaNO3, KCl and KNO3) were investigated. The results indicated that 150 min were sufficient for the adsorption to reach an equilibrium state and no adjustment of pH medium was necessary. Batch adsorption experiments such as adsorption isotherm, thermodynamics and kinetics were investigated and the experimental isotherm data were fitted to six isotherm models, namely Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Redlich-Peterson and Sips, with the latter being the best-fit isotherm model showing maximum adsorption capacity (qmax) of 267.9 mg g−1. Thermodynamics studies indicated adsorption of MV2B to be exothermic in nature, occurring spontaneously. The kinetics was best described by the pseudo-second-order model. Regeneration of IA pointed to its reusability, maintaining high adsorption capacity even up until Cycle 5 when treated with acid (HCl) and base (NaOH). Functional groups such as hydroxyl and amine groups which could be involved in the adsorption of MV2B were determined using FTIR spectroscopy, and the point of zero charge of IA was found to be at pH 6.81.


2020 ◽  
Vol 20 (5) ◽  
pp. 1119
Author(s):  
Margaretha Aditya Kurnia Purnaningtyas ◽  
Sri Sudiono ◽  
Dwi Siswanta

The activated carbon-chitosan-alginate (KKA) beads powder was synthesized to form an adsorbent for the cationic dyes, methylene blue (MB) and methyl violet 2B (MV 2B). The aims of this research were to determine the optimum composition of KKA beads powder for the adsorption of cationic dyes and to investigate the effect of pH, adsorbent mass, contact time, and initial concentration of MB and MV 2B dyes. A desorption study was also implemented to predict the adsorption mechanisms of MB and MV 2B dyes. The KKA beads powder was prepared by mixing chitosan, Na-alginate with various variation of masses (0.6; 0.8; 1.0; and 1.2 g) and activated carbon. The KKA beads were immersed in a CaCl2 solution. The KKA beads powder was characterized using FTIR spectroscopy and SEM. The desorption study was conducted in NaCl (0.1 M and 1.0 M), ethanol (40% and 60%), and pH 4 solution. The result showed that the KKA beads powder had been successfully created, with maximum adsorption capacities of 1.34 mmol g–1 for MB and 1.23 mmol g–1 for MV 2B. The kinetics and isotherms of MB and MV dyes adsorption on the KKA beads powder followed pseudo second order kinetics model and Freundlich isotherm. The desorption study showed that 60% ethanol was the most effective desorption solution for cationic dyes.


2020 ◽  
Vol 31 (7) ◽  
pp. 2843-2852 ◽  
Author(s):  
Yamil L. de O. Salomón ◽  
Jordana Georgin ◽  
Dison S.P. Franco ◽  
Matias S. Netto ◽  
Patricia Grassi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document