scholarly journals Tiny Kinks Record Ancient Quakes

Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Alka Tripathy-Lang
Keyword(s):  

As Earth ruptures, micas kink. These kink bands hide in rocks millions of years old, preserving evidence of past quakes.

2000 ◽  
Vol 653 ◽  
Author(s):  
Samuel Forest

AbstractThe mechanics of generalized continua provides an efficient way of introducing intrinsic length scales into continuum models of materials. A Cosserat framework is presented here to descrine the mechanical behavior of crystalline solids. The first application deals with the problem of the stress field at a crak tip in Cosserat single crystals. It is shown that the strain localization patterns developping at the crack tip differ from the classical picture : the Cosserat continuum acts as a bifurcation mode selector, whereby kink bands arising in the classical framework disappear in generalized single crystal plasticity. The problem of a Cosserat elastic inclusion embedded in an infinite matrix is then considered to show that the stress state inside the inclusion depends on its absolute size lc. Two saturation regimes are observed : when the size R of the inclusion is much larger than a characteristic size of the medium, the classical Eshelby solution is recovered. When R is much small than the inclusion, a much higher stress is reached (for an inclusion stiffer than the matrix) that does not depend on the size any more. There is a transition regime for which the stress state is not homogeneous inside the inclusion. Similar regimes are obtained in the study of grain size effects in polycrystalline aggregates of Cosserat grains.


2008 ◽  
Vol 3 (4) ◽  
pp. 155892500800300 ◽  
Author(s):  
Walter R. Hall ◽  
Warren F. Knoff

The strength retention after exposure to elevated temperature in air of continuous filament and staple spun PPTA sewing thread and the precursor yarns was determined. For both types, the process of converting the greige yarn to thread reduced the amount of strength retained after thermal exposure. The continuous filament products retained more strength than the staple products. The data was fitted to a kinetic rate model in which two strength loss processes occurred. The first process occurred within about the first 5 minutes of thermal exposure and is hypothesized to be hydrolytic degradation. The estimated secondary degradation process activation energy suggests this to be thermo-oxidative degradation. Optical microscopy of filaments indicates a higher level of kink banding and other damage in continuous filament versus staple products and in finished thread versus the precursor yarns. The kink bands and damage are believed to be caused by the staple manufacturing process and the downstream processing of precursor yarn to finished sewing thread. The kink bands and damage are hypothesized to be responsible for the differences in strength retention.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


2001 ◽  
Vol 34 (22) ◽  
pp. 7858-7867 ◽  
Author(s):  
Lei Qiao ◽  
Karen I. Winey ◽  
David C. Morse
Keyword(s):  

1991 ◽  
Vol 28 (5) ◽  
pp. 788-799 ◽  
Author(s):  
P. Rhéaume ◽  
K. Schrijver

The Bic fault is exposed along the shoreline of the St. Lawrence River, 21 km southwest of Rimouski, for 210 m at Cap à l'Orignal and for 100 m at Cap Enragé. The fault brings in contact two major thrust sheets, the Des Seigneuries and the Des Iles, Cambrian lithologies of the former overlying Ordovician rocks of the latter. In the Taconic Orogen, such contacts are normally thrust faults, but the Bic fault is a dextral strike-slip fault, striking east–west and dipping southward. A study of a narrow zone straddling the fault and an adjacent part of the Des Seigneuries thrust sheet has led to the recognition of four successive stages of deformation, all compatible with a northeast–southwest-trending strain ellipsoid. The two first stages are most important: stage 1 brought about regional folding and faulting, whereas stage 2 was characterized by the development of various structural elements (C–S fabrics, stretching lineation, Riedel shears, and kink bands) exclusive to the fault zone. We infer that (i) in the study area, the Bic fault constituted a lateral ramp along which the Des Seigneuries thrust sheet slid horizontally westward; and (ii) emplacement of Ba–Pb–Zn deposits took place slightly after this movement, probably during regional uplift of the orogen in Late Ordovician to Early Silurian time. The latter hypothesis tends to be corroborated by model lead ages of galena in two deposits.


1992 ◽  
Vol 129 (4) ◽  
pp. 475-490 ◽  
Author(s):  
H. Roper

AbstractThe Bedded Series of the Mona Complex at Rhoscolyn comprises two groups of clastic metasediments: the Holy Island Group, consistingof quartzites, impure psammites and pelites, with well-preserved bedding, is overlain conformably by the New Harbour Group, which is for the most parthomogeneously semi-pelitic without surviving bedding. Both groups have undergone the same two major tectono-metamorphic episodes, but with differing response. In the Holy Island Group the first episode (Dx) produced nearly upright and upward-facing folds (Fx) with an axial planar foliation (Sx), which varies from an anastomosing or rough-spaced cleavage in quartzites to a penetrative phyllitic schistosity in pelites. In the New Harbour Group Dx has generally obliterated original bedding surfaces, replacing them with a composite foliation (Sx) of fine compositional banding and a penetrative schistosity, together with a stretching lineation (Lx), the latter being at a high angle to the Fx axial direction. The Dx structures are attributed to a major episode of compressional tectonics.The structures attributed to the second deformation (Dy) includestrata-bound sets of quartz-filled tension fractures (attributed by most previous authors to an earlier episode), abundant NNW-verging asymmetric folds (Fy) of Sx, and a sporadically developed set of shear fractures which constitute a crenulation cleavage (Sy) axial planar to the folds. It is suggested that all these structures were produced by a single agency. One interpretation is that the observed shear fractures and folded tension fractures correspond fairly closely to and provide a natural analogy of those obtained in the classical simple shear experimentsof Riedel. In this case all the Dy structures can be accounted for by the action of a large-scale simple shear couple (Cy), whose vergence and shallow dip were both towards the NNW. Such a mechanism may imply a gravity-dominated regime of net horizontal extension in a NNW-SSE direction, with extension being less constrained to the north than to the south. J. W. Cosgrove has suggested an alternative interpretation, that all the Dy structures can be explained as reverse kink bands; the simple shear interpretation is here preferred because the angle between Sy and the estimated direction of Pmax during Dy was < 45°; the kink band model would require an angle > 45°.The fact that cleavage vergence boundaries for both Sx and Sy occur close to the hinge zone of the Rhoscolyn Antiform is consistent with either Dx or Dy age for the initiation of this fold. However, when fold limb length (or limb rotation) vergence is considered, the presence of an Fx0 vergence boundary but absence of an Fxy vergence boundary (and by implication of an Fy0 boundary) is consistent with a Dx age but difficult to reconcile with a Dy age.


2010 ◽  
Vol 64 ◽  
pp. 125-134
Author(s):  
Hanabusa Takao ◽  
Ayumi Shiro ◽  
Tatsuya Okada

Residual stresses of a copper bicrystal were measured by X-ray diffraction and synchrotron radiation. A copper bicrystal specimen with a 90-degree tilt boundary was fabricated by the Brigdman technique. After the plastic extension of 30%, kink bands developed in a deformed matrix along the grain boundary. In this study, we focused on the residual stress distribution along the transverse direction of the specimen surface and the residual stresses in deformed matrix and kink band near the grain boundary. Residual stresses were evaluated by the X-ray single crystal measurement method. Stereographic projections were used to determine crystal orientations of deformed regions. It was found that crystal orientations were different between the deformed matrix and the kink band. Residual stresses in the direction along the grain boundary were compressive in the vicinity of the boundary and tensile in the region apart from the boundary. Residual stresses in the kink band were large in compression in compared with those in the deformation matrix. The difference in the results between X-rays and synchrotron radiation suggests that there is a depth variation in the deformation and therefore the residual stress development.


1987 ◽  
Vol 93 (9) ◽  
pp. 681-699 ◽  
Author(s):  
Takeshi UEMURA ◽  
Xueming LONG
Keyword(s):  

2008 ◽  
Vol 23 (8) ◽  
pp. 2157-2165 ◽  
Author(s):  
Shahram Amini ◽  
Aiguo Zhou ◽  
Surojit Gupta ◽  
Andrew DeVillier ◽  
Peter Finkel ◽  
...  

Herein we report on the synthesis and characterization of Cr2GeC, a member of the so-called Mn+1AXn (MAX) phase family of layered machinable carbides and nitrides. Polycrystalline samples were synthesized by hot pressing pure Cr, Ge, and C powders at 1350 °C at ∼45 MPa for 6 h. No peaks other than those associated with Cr2GeC and Cr2O3, in the form of eskolaite, were observed in the x-ray diffraction spectra. The samples were readily machinable and fully dense. The steady-state Vickers hardness was 2.5 ± 0.1 GPa. The Young’s moduli measured in compression and by ultrasound were 200 ± 10 and 245 ± 3 GPa, respectively; the shear modulus and Poisson’s ratio deduced from the ultrasound results were 80 GPa and 0.29, respectively. The ultimate compressive strength for a ∼20 μm grain size sample was 770 ± 30 MPa. Samples compressively loaded from 300 to ∼570 MPa exhibited nonlinear, fully reversible, reproducible, closed hysteretic loops that dissipated ∼20% of the mechanical energy, a characteristic of the MAX phases, in particular, and kinking nonlinear elastic solids, in general. The energy dissipated is presumably due to the formation and annihilation of incipient kink bands. The critical resolved shear stress of the basal plane dislocations—estimated from our microscale model—is ∼22 MPa. The incipient kink band and reversible dislocation densities, at the maximum stress of 568 MPa, are estimated to be 1.2 × 10−2 μm−3 and 1.0 × 1010 cm−2, respectively.


Nature ◽  
1964 ◽  
Vol 204 (4960) ◽  
pp. 772-773 ◽  
Author(s):  
BRIAN MARSHALL

Sign in / Sign up

Export Citation Format

Share Document