cyclic compression
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 76)

H-INDEX

36
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Sevgi Onal ◽  
Maan M. Alkaisi ◽  
Volker Nock

Mechanical forces shape physiological structure and function within cell and tissue microenvironments, during which cells strive to restore their shape or develop an adaptive mechanism to maintain cell integrity depending on strength and type of the mechanical loading. While some cells are shown to experience permanent plastic deformation after a repetitive mechanical tensile loading and unloading, the impact of such repetitive compression on plastic deformation of cells is yet to be discovered. As such, the ability to apply cyclic compression is crucial for any experimental setup aimed at the study of mechanical compression taking place in cell and tissue microenvironments. Here, the capability of our microfluidic compression platform to aid in the observation of the sequential cyclic compression of live cell actin is illustrated using SKOV-3 ovarian cancer cells. Live imaging of the actin cytoskeleton dynamics of the compressed cells was performed for the applied varying pressures in ascending order during cell compression. Additionally, recovery of the compressed cells was investigated by capturing actin cytoskeleton and nuclei profiles of the cells at zero time and 24 h-recovery after compression in end point assays. This was performed for a range of mild pressures within the physiological range. The extent of recovery of the compressed cells can give insights into the plasticity of the cancer cells by imaging cell membrane bulges and actin cytoskeleton and measuring the shape descriptors of cell nuclei. As demonstrated in this work, the developed platform can control the strength and duration of cyclic compression, while enabling the observation of morphological and cytoskeletal and nuclear changes in cells, thus providing a powerful new tool for the study of mechanobiological processes in cancer and cell biology.


2022 ◽  
pp. 104313
Author(s):  
Senlei Xu ◽  
Xuefeng Xia ◽  
Yuchen Liu ◽  
Fang Chen ◽  
Renjun Gu ◽  
...  

2021 ◽  
Vol 5 (11) ◽  
pp. 296
Author(s):  
Raffael Bogenfeld ◽  
Christopher Gorsky

The behavior of impact damaged composite laminates under cyclic load is crucial to achieve a damage tolerant design of composite structures. A sufficient residual strength has to be ensured throughout the entire structural service life. In this study, a set of 27 impacted coupon specimens is subjected to quasi-static and cyclic compression load. After long intervals without detectable damage growth, the specimens fail through the sudden lateral propagation of delamination and fiber kink bands within few load cycles. Ultrasonic inspections were used to reveal the damage size after certain cycle intervals. Through continuous dent depth measurements during the cyclic tests, the evolution of the dent visibility was monitored. These measurements revealed a relaxation of the indentation of up to 90% before ultimate failure occurs. Due to the distinct relaxation and the short growth interval before ultimate failure, this study confirms the no-growth design approach as the preferred method to account for the damage tolerance of stiffened, compression-loaded composite laminates.


Author(s):  
Yan Gao ◽  
Feixiang Lu ◽  
Shouhui Wang ◽  
Lianwen Sun ◽  
Huijie Leng ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5715
Author(s):  
Zilu Lin ◽  
Wenzhao Jiang ◽  
Zehong Chen ◽  
Linxin Zhong ◽  
Chuanfu Liu

Biomass, as the most abundant and sustainable resource on the earth, has been regarded as an ideal carbon source to prepare various carbon materials. However, manufacturing shape-memory carbon aerogels with excellent compressibility and elasticity from biomass remains an open challenge. Herein, a cellulose-derived carbon aerogel with an anisotropic architecture is fabricated with the assistance of graphene oxide (GO) through a directional freeze-drying process and carbonization. The carbon aerogel displays excellent shape-memory performances, with high stress and height retentions of 93.6% and 95.5% after 1000 compression cycles, respectively. Moreover, the carbon aerogel can identify large ranges of compression strain (10%–80%), and demonstrates excellent current stability during cyclic compression. The carbon aerogel can precisely capture a variety of biological signals in the human body, and thus can be used in wearable electronic devices.


Author(s):  
Christina Kummert ◽  
Hans-Joachim Schmid ◽  
Lena Risse ◽  
Gunter Kullmer

Abstract Additive Manufacturing provides the opportunity to produce tailored and complex structures economically. The use of lattice structures in combination with a thermoplastic elastomer enables the generation of structures with configurable properties by varying the cell parameters. Since there is only little knowledge about the producibility of lattice structures made of TPE in the laser sintering process and the resulting mechanical properties, different kinds of lattice structures are investigated within this work. The cell type, cell size and strut thickness of these structures are varied and analyzed. Within the experimental characterization of Dodecahedron-cell static and cyclic compression tests of sandwich structures are focused. The material exhibits hyperelastic and plastic properties and also the Mullins-Effect. For the later design of real TPE structures, the use of numerical methods helps to reduce time and costs. The preceding experimental investigations are used to develop a concept for the numerical modeling of TPE lattice structures. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jungwook Paek ◽  
Joseph W. Song ◽  
Ehsan Ban ◽  
Yuma Morimitsu ◽  
Chinedum O. Osuji ◽  
...  

AbstractHere we present a microengineered soft-robotic in vitro platform developed by integrating a pneumatically regulated novel elastomeric actuator with primary culture of human cells. This system is capable of generating dynamic bending motion akin to the constriction of tubular organs that can exert controlled compressive forces on cultured living cells. Using this platform, we demonstrate cyclic compression of primary human endothelial cells, fibroblasts, and smooth muscle cells to show physiological changes in their morphology due to applied forces. Moreover, we present mechanically actuatable organotypic models to examine the effects of compressive forces on three-dimensional multicellular constructs designed to emulate complex tissues such as solid tumors and vascular networks. Our work provides a preliminary demonstration of how soft-robotics technology can be leveraged for in vitro modeling of complex physiological tissue microenvironment, and may enable the development of new research tools for mechanobiology and related areas.


Sign in / Sign up

Export Citation Format

Share Document