toroidal bubble
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 926 ◽  
Author(s):  
Youssef Saade ◽  
Maziyar Jalaal ◽  
Andrea Prosperetti ◽  
Detlef Lohse

A rapidly growing bubble close to a free surface induces jetting: a central jet protruding outwards and a crown surrounding it at later stages. While the formation mechanism of the central jet is known and documented, that of the crown remains unsettled. We perform axisymmetric simulations of the problem using the free software program BASILISK, where a finite-volume compressible solver has been implemented, which uses a geometric volume-of-fluid (VoF) method for the tracking of the interface. We show that the mechanism of crown formation is a combination of a pressure distortion over the curved interface, inducing flow focusing, and of a flow reversal, caused by the second expansion of the toroidal bubble that drives the crown. The work culminates in a parametric study with the Weber number, the Reynolds number, the pressure ratio and the dimensionless bubble distance to the free surface as control parameters. Their effects on both the central jet and the crown are explored. For high Weber numbers, we observe the formation of weaker ‘secondary crowns’, highly correlated with the third oscillation cycle of the bubble.


2018 ◽  
Vol 853 ◽  
pp. 72-110 ◽  
Author(s):  
Kuppuraj Rajamanickam ◽  
Saptarshi Basu

The main idea of this paper is to understand the fundamental vortex breakdown mechanisms in the coaxial swirling flow field. In particular, the interaction dynamics of the flow field is meticulously addressed with the help of high fidelity laser diagnostic tools. Time-resolved particle image velocimetry (PIV) (${\sim}1500~\text{frames}~\text{s}^{-1}$) is employed in $y{-}r$ and multiple $r{-}\unicode[STIX]{x1D703}$ planes to precisely delineate the flow dynamics. Experiments are carried out for three sets of co-annular flow Reynolds number $Re_{a}=4896$, 10 545, 17 546. Furthermore, for each $Re_{a}$ condition, the swirl number ‘$S_{G}$’ is varied independently from $0\leqslant S_{G}\leqslant 3$. The global evolution of flow field across various swirl numbers is presented using the time-averaged PIV data. Three distinct forms of vortex breakdown namely, pre-vortex breakdown (PVB), central toroidal recirculation zone (CTRZ; axisymmetric toroidal bubble type breakdown) and sudden conical breakdown are witnessed. Among these, the conical form of vortex breakdown is less explored in the literature. In this paper, much attention is therefore focused on exploring the governing mechanism of conical breakdown. It is should be interesting to note that, unlike other vortex breakdown modes, conical breakdown persists only for a very short band of $S_{G}$. For any small increase/decrease in $S_{G}$ beyond a certain threshold, the flow spontaneously reverts back to the CTRZ state. Energy ranked and frequency-resolved/ranked robust structure identification methods – proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) respectively – are implemented over instantaneous time-resolved PIV data sets to extract the dynamics of the coherent structures associated with each vortex breakdown mode. The dominant structures obtained from POD analysis suggest the dominance of the Kelvin–Helmholtz (KH) instability (axial $+$ azimuthal; accounts for ${\sim}80\,\%$ of total turbulent kinetic energy, TKE) for both PVB and CTRZ while the remaining energy is contributed by shedding modes. On the other hand, shedding modes contribute the majority of the TKE in conical breakdown. The frequency signatures quantified from POD temporal modes and DMD analysis reveal the occurrence of multiple dominant frequencies in the range of ${\sim}10{-}400~\text{Hz}$ with conical breakdown. This phenomenon may be a manifestation of high energy contribution by shedding eddies in the shear layer. Contrarily, with PVB and CTRZ, the dominant frequencies are observed in the range of ${\sim}20{-}40~\text{Hz}$ only. We have provided a detailed exposition of the mechanism through which conical breakdown occurs. In addition, the current work explores the hysteresis (path dependence) phenomena of conical breakdown as functions of the Reynolds and Rossby numbers. It has been observed that the conical mode is not reversible and highly dependent on the initial conditions.


2018 ◽  
Vol 841 ◽  
pp. 28-49 ◽  
Author(s):  
Emil-Alexandru Brujan ◽  
Tatsuya Noda ◽  
Atsushi Ishigami ◽  
Toshiyuki Ogasawara ◽  
Hiroyuki Takahira

The behaviour of a laser-induced cavitation bubble near two perpendicular rigid walls and its dependence on the distance between bubble and walls is investigated experimentally. It was shown by means of high-speed photography with $100\,000~\text{frames}~\text{s}^{-1}$ that an inclined jet is formed during bubble collapse and the bubble migrates in the direction of the jet. At a given position of the bubble with respect to the horizontal wall, the inclination of the jet increases with decreasing distance between the bubble and the second, vertical wall. A bubble generated at equal distances from the walls develops a jet that is directed in their bisection. The penetration of the jet into the opposite bubble surface leads to the formation of an asymmetric toroidal bubble that is perpendicular to the jet direction. At a large distance from the rigid walls, the toroidal bubble collapses in the radial direction, eventually disintegrating into tiny microbubbles. When the bubble is in contact with the horizontal wall at its maximum expansion, the toroidal ring collapses in both radial and toroidal directions, starting from the bubble part opposite to the vertical wall, and the bubble achieves a crescent shape at the moment of second collapse. The bubble oscillation is accompanied by a strong migration along the horizontal wall.


2017 ◽  
Vol 819 ◽  
pp. 465-493 ◽  
Author(s):  
Y. Tomita ◽  
K. Sato

An experiment is performed using high-speed photography to elucidate the behaviours of jets formed by the interactions of two laser-induced tandem bubbles produced axisymmetrically for a range of dimensionless interaction parameters such as the bubble size ratio, $\unicode[STIX]{x1D709}$, the distance between the two cavitation bubbles, $l_{0}^{\ast }$, and the time difference in bubble generation, $\unicode[STIX]{x0394}\unicode[STIX]{x1D703}^{\ast }$. A strong interaction occurs for $l_{0}^{\ast }<1$. The first bubble produced (bubble A) deforms because of the rapid growth of the second bubble (bubble B) to create a pulsed conical jet, sometimes with spray formation at the tip, formed by the small amount of water confined between the two bubbles. This phenomenon is followed by bubble penetration, toroidal bubble collapse, and the subsequent fast contraction of bubble B accompanied by a fine jet. The formation mechanism of the conical jet is similar to that of a water spike developed in air from a deformed free surface of a single growing bubble; however, the pressures of the gases surrounding each type of jet differ. The jet behaviours can be controlled by manipulating the interaction parameters; the jet velocity is significantly affected by $\unicode[STIX]{x1D709}$ and $l_{0}^{\ast }$, but less so by $\unicode[STIX]{x0394}\unicode[STIX]{x1D703}^{\ast }$ for $\unicode[STIX]{x0394}\unicode[STIX]{x1D703}^{\ast }>\unicode[STIX]{x0394}\unicode[STIX]{x1D703}_{c}^{\ast }$ ($\unicode[STIX]{x0394}\unicode[STIX]{x1D703}_{c}^{\ast }$ being the critical birth-time difference). The optimum time of jet impact, at which bubble A reaches its maximum volume, depends on $\unicode[STIX]{x0394}\unicode[STIX]{x1D703}^{\ast }$. It is generally later for larger values of $\unicode[STIX]{x1D709}$. A pulsed jet could be used to create small pores in a cell membrane; therefore, the reported method may be useful for application in tandem-bubble sonoporation.


2016 ◽  
Vol 28 (12) ◽  
pp. 122101 ◽  
Author(s):  
Y. L. Liu ◽  
Q. X. Wang ◽  
S. P. Wang ◽  
A. M. Zhang
Keyword(s):  

2016 ◽  
Vol 42 ◽  
pp. 1660157
Author(s):  
SHUAI LI ◽  
SHI-PING WANG ◽  
A-MAN ZHANG

The dynamics of a toroidal bubble splitting near a rigid wall in an inviscid incompressible fluid is studied in this paper. The boundary integral method is adopted to simulate the bubble motion. After the jet impact, the vortex ring model is used to handle the discontinued potential of the toroidal bubble. When the toroidal bubble is splitting, topology changes are made tear the bubble apart. Then, the vortex ring model is extended to multiple vortex rings to simulate the interaction between two toroidal bubbles. A typical case is discussed in this study. Besides, the velocity fields and pressure contours surrounding the bubble are used to illustrate the numerical results. An annular high pressure region is generated at the splitting location, and the maximum pressure may be much higher than the jet impact. More splits may happen after the first split.


2015 ◽  
Vol 109 ◽  
pp. 611-622 ◽  
Author(s):  
Shiping Wang ◽  
Wenyang Duan ◽  
Qianxi Wang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document