scholarly journals Olfactory Sensitivity in Mammalian Species

2016 ◽  
pp. 369-390 ◽  
Author(s):  
M. WACKERMANNOVÁ ◽  
L. PINC ◽  
L. JEBAVÝ

Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.


2009 ◽  
Vol 89 (3) ◽  
pp. 921-956 ◽  
Author(s):  
Roberto Tirindelli ◽  
Michele Dibattista ◽  
Simone Pifferi ◽  
Anna Menini

In recent years, considerable progress has been achieved in the comprehension of the profound effects of pheromones on reproductive physiology and behavior. Pheromones have been classified as molecules released by individuals and responsible for the elicitation of specific behavioral expressions in members of the same species. These signaling molecules, often chemically unrelated, are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. The standard view of pheromone sensing was based on the assumption that most mammals have two separated olfactory systems with different functional roles: the main olfactory system for recognizing conventional odorant molecules and the vomeronasal system specifically dedicated to the detection of pheromones. However, recent studies have reexamined this traditional interpretation showing that both the main olfactory and the vomeronasal systems are actively involved in pheromonal communication. The current knowledge on the behavioral, physiological, and molecular aspects of pheromone detection in mammals is discussed in this review.



2014 ◽  
Vol 281 (1783) ◽  
pp. 20132828 ◽  
Author(s):  
Eva C. Garrett ◽  
Michael E. Steiper

Mammalian olfaction comprises two chemosensory systems: the odorant-detecting main olfactory system (MOS) and the pheromone-detecting vomeronasal system (VNS). Mammals are diverse in their anatomical and genomic emphases on olfactory chemosensation, including the loss or reduction of these systems in some orders. Despite qualitative evidence linking the genomic evolution of the olfactory systems to specific functions and phenotypes, little work has quantitatively tested whether the genomic aspects of the mammalian olfactory chemosensory systems are correlated to anatomical diversity. We show that the genomic and anatomical variation in these systems is tightly linked in both the VNS and the MOS, though the signature of selection is different in each system. Specifically, the MOS appears to vary based on absolute organ and gene family size while the VNS appears to vary according to the relative proportion of functional genes and relative anatomical size and complexity. Furthermore, there is little evidence that these two systems are evolving in a linked fashion. The relationships between genomic and anatomical diversity strongly support a role for natural selection in shaping both the anatomical and genomic evolution of the olfactory chemosensory systems in mammals.



2015 ◽  
Vol 53 (3) ◽  
pp. 221-226
Author(s):  
E. Mori ◽  
W. Petters ◽  
V.A. Schriever ◽  
C. Valder ◽  
T. Hummel

Background: Short-term exposure to odours, also called "olfactory training" has been shown to improve olfactory function in healthy people but also in people with olfactory loss. Aim of this single center, prospective, controlled study was to investigate the change of olfactory function following twice-daily, short-term exposure to 4 odours over a period of approximately 12 weeks. Material and methods: We compared odour identification abilities and odour thresholds between an olfactory training group (TR group) and a group that did not perform such training (noTR group). Participants exposed themselves twice daily to 4 odours ("rose", "eucalyptus", "lemon", "clove"). Olfactory testing was performed before and after the training period using the "Sniffin' Sticks" test kit (odour identification plus odour thresholds). Results: At baseline the two groups were not significantly different in terms of age and measures of olfactory sensitivity. The TR group performed significantly better for odour thresholds for all 4 odours compared to the noTR group after 12 weeks of olfactory training. Also, with regard to odour identification the TR group outperformed the noTR group. No significant differences were found for diary-based intensity ratings. Conclusion: Repeated exposure to odours seems to improve general olfactory sensitivity in children.



2007 ◽  
Vol 121 (8) ◽  
pp. 755-758 ◽  
Author(s):  
A M Robinson ◽  
J A Gaskin ◽  
C M Philpott ◽  
P C Goodenough ◽  
M Elloy ◽  
...  

AbstractObjectives:Body sprays and perfumes are commonly worn by patients attending ENT out-patients clinics. Their effect on performance in olfactory testing is unknown. The aim of this study was to determine whether olfactory thresholds are altered by the presence of such fragrances.Materials and methods:One hundred and sixty healthy volunteers, aged 18 to 65 years, underwent olfactory thresholds testing. Each was then exposed to one of four strong perfumes, applied in a facemask for two minutes, and the thresholds were retested.Results and analysis:All olfactory thresholds worsened after being exposed to the strong perfumes of LynxTM and ImpulseTM body sprays, with the strongest effect being on olfactory detection of phenylethyl alcohol (p<0.001).Conclusions:Strong perfumes can have a negative effect on olfactory thresholds.Significance:Patients attending olfactory threshold testing need to be advised not to wear body sprays or perfumes.



2002 ◽  
Vol 205 (11) ◽  
pp. 1633-1643 ◽  
Author(s):  
Matthias Laska ◽  
Alexandra Seibt

SUMMARY The view that primates are microsmatic animals is based mainly on an interpretation of neuroanatomical features, whereas physiological evidence of a poorly developed sense of smell in this order of mammals is largely lacking. Using a conditioning paradigm, we therefore assessed the olfactory sensitivity of three squirrel monkeys (Saimiri sciureus) and of four pigtail macaques (Macaca nemestrina) for a homologous series of aliphatic alcohols (ethanol to 1-octanol) and isomeric forms of some of these substances. In the majority of cases, the animals of both species significantly discriminated concentrations below 1 part per million from the odourless solvent, and with 1-hexanol individual monkeys even demonstrated thresholds below 10 parts per billion. The results showed (i) that both primate species have a well-developed olfactory sensitivity for aliphatic alcohols, which for the majority of substances matches or even is better than that of species such as the rat, (ii) that both species generally show very similar olfactory detection thresholds for aliphatic alcohols, and (iii) that a significant negative correlation between perceptibility in terms of olfactory detection threshold and carbon chain length of both the aliphatic 1-and 2-alcohols exists in both species. These findings support the idea that across-species comparisons of neuroanatomical features are a poor predictor of olfactory performance and that general labels such as `microsmat' or`macrosmat', which are usually based on allometric comparisons of olfactory brain structures, are inadequate to describe the olfactory capabilities of a species. Further, our findings suggest that olfaction may play an important and hitherto underestimated role in the regulation of behaviour in the species tested.



2006 ◽  
Vol 361 (1476) ◽  
pp. 2061-2078 ◽  
Author(s):  
Peter A Brennan ◽  
Keith M Kendrick

Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent–offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.



2000 ◽  
Vol 355 (1401) ◽  
pp. 1209-1213 ◽  
Author(s):  
Heather L. Eisthen

Previous reports have indicated that members of the proteid family of salamanders lack a vomeronasal system, and this absence has been interpreted as representing the ancestral condition for aquatic amphibians. I examined the anatomy of the nasal cavities, nasal epithelia, and forebrains of members of the proteid family, mudpuppies ( Necturus maculosus ), as well as members of the amphiumid and sirenid families ( Amphiuma tridactylum and Siren intermedia ). Using a combination of light and transmission electron microscopy, I found no evidence that mudpuppies possess a vomeronasal system, but found that amphiuma and sirens possess both vomeronasal and olfactory systems. Amphiumids and sirenids are considered to be outgroups relative to proteids; therefore, these data indicate that the vomeronasal system is generally present in salamanders and has been lost in mudpuppies. Given that the vomeronasal system is generally present in aquatic amphibians, and that the last common ancestor of amphibians and amniotes is believed to have been fully aquatic, I conclude that the vomeronasal system arose in aquatic tetrapods and did not originate as an adaptation to terrestrial life. This conclusion has important implications for the hypothesis that the vomeronasal organ is specialized for detection of non–volatile compounds.



2022 ◽  
Vol 67 (1) ◽  
pp. 261-279
Author(s):  
Ian W. Keesey ◽  
Bill S. Hansson

In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.



2015 ◽  
Vol 112 (3) ◽  
pp. E311-E320 ◽  
Author(s):  
Tomohiko Matsuo ◽  
Tatsuya Hattori ◽  
Akari Asaba ◽  
Naokazu Inoue ◽  
Nobuhiro Kanomata ◽  
...  

Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON–mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.



Perception ◽  
2016 ◽  
Vol 46 (3-4) ◽  
pp. 333-342 ◽  
Author(s):  
Amir Sarrafchi ◽  
Matthias Laska

Using a conditioning paradigm and an automated olfactometer, we investigated the olfactory sensitivity of CD-1 mice for the mammalian blood odor component trans-4,5-epoxy-(E)-2-decenal. We found that two of the animals significantly discriminated concentrations down to 3.0 ppt (parts per trillion) from the solvent, and three animals even successfully detected dilutions as low as 0.3 ppt. Intraspecific comparisons between the olfactory detection thresholds obtained here with those obtained in earlier studies with other odorants show that mice are extraordinarily sensitive to this blood odor component. Interspecific comparisons of olfactory detection thresholds show that human subjects are even more sensitive to trans-4,5-epoxy-(E)-2-decenal than the mice tested here. Both intra- and inter-specific comparisons suggest that neither neuroanatomical properties such as the size of the olfactory epithelium, the total number of olfactory receptor neurons, or the size of olfactory brain structures, nor genetic properties such as the number of functional olfactory receptor genes or the proportion of functional relative to the total number of olfactory receptor genes allow us to reliably predict a species’ olfactory sensitivity. In contrast, the results support the notion that the behavioral relevance of an odorant rather than neuroanatomical or genetic properties may determine a species’ olfactory sensitivity.



Sign in / Sign up

Export Citation Format

Share Document