scholarly journals HopA1 Effector from Pseudomonas syringae pv syringae Strain 61 Affects NMD Processes and Elicits Effector-Triggered Immunity

2021 ◽  
Vol 22 (14) ◽  
pp. 7440
Author(s):  
Shraddha K. Dahale ◽  
Daipayan Ghosh ◽  
Kishor D. Ingole ◽  
Anup Chugani ◽  
Sang Hee Kim ◽  
...  

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.

Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2006 ◽  
Vol 188 (23) ◽  
pp. 8013-8021 ◽  
Author(s):  
Alexander Schenk ◽  
Michael Berger ◽  
Lisa M. Keith ◽  
Carol L. Bender ◽  
Georgi Muskhelishvili ◽  
...  

ABSTRACT The phytopathogenic bacterium Pseudomonas syringae pv. glycinea infects soybean plants and causes bacterial blight. In addition to P. syringae, the human pathogen Pseudomonas aeruginosa and the soil bacterium Azotobacter vinelandii produce the exopolysaccharide alginate, a copolymer of d-mannuronic and l-guluronic acids. Alginate production in P. syringae has been associated with increased fitness and virulence in planta. Alginate biosynthesis is tightly controlled by proteins encoded by the algT-muc regulatory gene cluster in P. aeruginosa and A. vinelandii. These genes encode the alternative sigma factor AlgT (σ22), its anti-sigma factors MucA and MucB, MucC, a protein with a controversial function that is absent in P. syringae, and MucD, a periplasmic serine protease and homolog of HtrA in Escherichia coli. We compared an alginate-deficient algT mutant of P. syringae pv. glycinea with an alginate-producing derivative in which algT is intact. The alginate-producing derivative grew significantly slower in vitro growth but showed increased epiphytic fitness and better symptom development in planta. Evaluation of expression levels for algT, mucA, mucB, mucD, and algD, which encodes an alginate biosynthesis gene, showed that mucD transcription is not dependent on AlgT in P. syringae in vitro. Promoter mapping using primer extension experiments confirmed this finding. Results of reverse transcription-PCR demonstrated that algT, mucA, and mucB are cotranscribed as an operon in P. syringae. Northern blot analysis revealed that mucD was expressed as a 1.75-kb monocistronic mRNA in P. syringae.


2001 ◽  
Vol 14 (2) ◽  
pp. 234-241 ◽  
Author(s):  
Wenqi Hu ◽  
Jing Yuan ◽  
Qiao-Ling Jin ◽  
Patrick Hart ◽  
Sheng Yang He

Hypersensitive reaction and pathogenicity (hrp) genes are required for Pseudomonas syringae pv. tomato (Pst) DC3000 to cause disease in susceptible tomato and Arabidopsis thaliana plants and to elicit the hypersensitive response in resistant plants. The hrp genes encode a type III protein secretion system known as the Hrp system, which in Pst DC3000 secretes HrpA, HrpZ, HrpW, and AvrPto and assembles a surface appendage, named the Hrp pilus, in hrp-gene-inducing minimal medium. HrpA has been suggested to be the Hrp pilus structural protein on the basis of copurification and mutational analyses. In this study, we show that an antibody against HrpA efficiently labeled Hrp pili, whereas antibodies against HrpW and HrpZ did not. Immunogold labeling of bacteria-infected Arabidopsis thaliana leaf tissue with an Hrp pilus antibody revealed a characteristic lineup of gold particles around bacteria and/or at the bacterium-plant contact site. These results confirm that HrpA is the major structural protein of the Hrp pilus and provide evidence that Hrp pili are assembled in vitro and in planta.


Author(s):  
Karl Schreiber ◽  
Jennifer D Lewis

Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. In an effort to identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a Interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants was particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.


2017 ◽  
Author(s):  
Christina Straub ◽  
Elena Colombi ◽  
Li Li ◽  
Hongwen Huang ◽  
Matthew D. Templeton ◽  
...  

SUMMARYInteractions between commensal microbes and invading pathogens are understudied, despite their likely effects on pathogen population structure and infection processes. We describe the population structure and genetic diversity of a broad range of co-occurringPseudomonas syringaeisolated from infected and uninfected kiwifruit during an outbreak of bleeding canker disease caused byP. syringaepv.actinidiae(Psa) in New Zealand. Overall population structure was clonal and affected by ecological factors including infection status and cultivar. Most isolates are members of a new clade in phylogroup 3 (PG3a), also present on kiwifruit leaves in China and Japan. Stability of the polymorphism between pathogenicPsaand commensalP. syringaePG3a isolated from the same leaf was tested using reciprocal invasion from rare assaysin vitroand in planta.P. syringaeG33C (PG3a) inhibitedPsaNZ54, while the presence ofPsaNZ54 enhanced the growth ofP. syringaeG33C. This effect could not be attributed to virulence activity encoded by the Type 3 secretion system ofPsa. Together our data contribute toward the development of an ecological perspective on the genetic structure of pathogen populations.ORIGINALITY-SIGNIFICANT STATEMENTBacterial pathogen populations are often studied with little consideration of co-occurring microbes and yet interactions between pathogens and commensals can affect both population structure and disease progression. A fine-scale sampling of commensals present on kiwifruit leaves during an outbreak of bleeding canker disease caused byP. syringaepv.actinidiaereveals a clonal population structure. A new clade of non-pathogenicP. syringae(PG3a) appears to be associated with kiwifruit on a global scale. The presence of PG3a on kiwifruit has significant effects on the outcome of infection byP. syringaepv.actinidiae. This emphasises the value of studying the effect of co-occurring bacteria on pathogen-plant interactions.


2009 ◽  
Vol 22 (9) ◽  
pp. 1069-1080 ◽  
Author(s):  
Ming Guo ◽  
Fang Tian ◽  
Yashitola Wamboldt ◽  
James R. Alfano

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern–triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.


2000 ◽  
Vol 182 (12) ◽  
pp. 3508-3516 ◽  
Author(s):  
Erik L. Hendrickson ◽  
Pablo Guevera ◽  
Frederick M. Ausubel

ABSTRACT β-Glucuronidase (uidA) reporter gene fusions were constructed for the hrpZ, hrpL, andhrpS genes from the phytopathogen Pseudomonas syringae pv. maculicola strain ES4326. These reporters, as well as an avrRpt2-uidA fusion, were used to measure transcriptional activity in ES4326 and a ES4326 rpoNmutant. rpoN was required for the expression ofavrRpt2, hrpZ, and hrpL in vitro in minimal media and in vivo when infiltrated into Arabidopsis thaliana leaves. In contrast, the expression of hrpSwas essentially the same in wild-type and rpoN mutant strains. Constitutive expression of hrpL in anrpoN mutant restored hrpZ transcription to wild-type levels, restored the hypersensitive response when infiltrated into tobacco (Nicotiana tobacum), and partially restored the elicitation of virulence-related symptoms but not growth when infiltrated into Arabidopsis leaves. These data indicate that rpoN-mediated control of hrp gene expression acts at the level of hrpL and that in planta growth of P. syringae is not required for the elicitation of disease symptoms.


2010 ◽  
Vol 23 (5) ◽  
pp. 682-701 ◽  
Author(s):  
Inmaculada Ortiz-Martín ◽  
Richard Thwaites ◽  
John W. Mansfield ◽  
Carmen R. Beuzón

Many plant-pathogenic bacteria require type III secretion systems (T3SS) to cause disease in compatible hosts and to induce the hypersensitive response in resistant plants. T3SS gene expression is induced within the plant and responds to host and environmental factors. In Pseudomonas syringae, expression is downregulated by the Lon protease in rich medium and by HrpV under inducing conditions. HrpV acts as an anti-activator by binding HrpS. HrpG, which can also bind HrpV, has been reported to act as an anti-anti-activator. Previous studies have used mostly in vitro inducing conditions, different pathovars, and methodology. We have used single and double lon and hrpV mutants of P. syringae pv. phaseolicola 1448a, as well as strains ectopically expressing the regulators, to examine their role in coordinating expression of the T3SS. We applied real-time polymerase chain reaction to analyze gene expression both in vitro and in planta, and assessed bacterial fitness using competitive indices. Our results indicate that i) Lon downregulates expression of the hrp/hrc genes in all conditions, probably by constitutively degrading naturally unstable HrpR; ii) HrpV and HrpT downregulate expression of the hrp/hrc genes in all conditions; and iii) HrpG has an additional, HrpV-independent role, regulating expression of the hrpC operon.


2019 ◽  
Vol 32 (9) ◽  
pp. 1229-1242 ◽  
Author(s):  
Philip Albers ◽  
Suayib Üstün ◽  
Katja Witzel ◽  
Max Kraner ◽  
Frederik Börnke

The plasma membrane (PM) is at the interface of plant–pathogen interactions and, thus, many bacterial type-III effector (T3E) proteins target membrane-associated processes to interfere with immunity. The Pseudomonas syringae T3E HopZ1a is a host cell PM-localized effector protein that has several immunity-associated host targets but also activates effector-triggered immunity in resistant backgrounds. Although HopZ1a has been shown to interfere with early defense signaling at the PM, no dedicated PM-associated HopZ1a target protein has been identified until now. Here, we show that HopZ1a interacts with the PM-associated remorin protein NbREM4 from Nicotiana benthamiana in several independent assays. NbREM4 relocalizes to membrane nanodomains after treatment with the bacterial elicitor flg22 and transient overexpression of NbREM4 in N. benthamiana induces the expression of a subset of defense-related genes. We can further show that NbREM4 interacts with the immune-related receptor-like cytoplasmic kinase avrPphB-susceptible 1 (PBS1) and is phosphorylated by PBS1 on several residues in vitro. Thus, we conclude that NbREM4 is associated with early defense signaling at the PM. The possible relevance of the HopZ1a–NbREM4 interaction for HopZ1a virulence and avirulence functions is discussed. [Formula: see text]Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


Sign in / Sign up

Export Citation Format

Share Document