cathepsin x
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

21
(FIVE YEARS 1)

2022 ◽  
Vol 79 (1) ◽  
Author(s):  
Ana Mitrović ◽  
Janja Završnik ◽  
Georgy Mikhaylov ◽  
Damijan Knez ◽  
Urša Pečar Fonović ◽  
...  

AbstractNew therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


2021 ◽  
Vol 22 (24) ◽  
pp. 13495
Author(s):  
Tanja Jakoš ◽  
Mateja Prunk ◽  
Anja Pišlar ◽  
Janko Kos

Cathepsin X is a lysosomal peptidase that is involved in tumour progression and represents a potential target for therapeutic interventions. In addition, it regulates important functions of immune cells and is implicated in the modulation of tumour cell–immune cell crosstalk. Selective cathepsin X inhibitors have been proposed as prospective antitumour agents to prevent cancer progression; however, their impact on the antitumour immune response has been overlooked. Previous studies indicate that the migration and adhesion of T cells and dendritic cells are affected by diminished cathepsin X activity. Meanwhile, the influence of cathepsin X inhibition on natural killer (NK) cell function has not yet been explored. Here, we examined the localization patterns of cathepsin X and the role of its inhibitors on the cytotoxicity of cell line NK-92, which is used for adoptive cellular immunotherapy in cancer patients. NK-92 cells depend on lymphocyte function-associated antigen 1 (LFA-1) to form stable immunoconjugates with target cells, providing, in this way, optimal cytotoxicity. Since LFA-1 is a substrate for cathepsin X activity in other types of cells, we hypothesized that cathepsin X could disturb the formation of NK-92 immunoconjugates. Thus, we employed cathepsin X reversible and irreversible inhibitors and evaluated their effects on the NK-92 cell interactions with target cells and on the NK-92 cell cytotoxicity. We show that cathepsin X inhibition does not impair stable conjugate formation or the lytic activity of NK-92 cells. Similarly, the conjugate formation between Jurkat T cells and target cells was not affected by cathepsin X activity. Unlike in previous migration and adhesion studies on T cells, in NK-92 cells cathepsin X was not co-localized with LFA-1 at the plasma membrane but was, rather, redistributed to the cytotoxic granules and secreted during degranulation.


2021 ◽  
Vol 1869 (2) ◽  
pp. 140567
Author(s):  
Iztok Dolenc ◽  
Ivica Štefe ◽  
Dušan Turk ◽  
Ajda Taler-Verčič ◽  
Boris Turk ◽  
...  

2020 ◽  
Vol 13 ◽  
Author(s):  
Anja Pišlar ◽  
Larisa Tratnjek ◽  
Gordana Glavan ◽  
Nace Zidar ◽  
Marko Živin ◽  
...  

Neuroinflammation is an important factor in the pathogenesis of neurodegenerative diseases. Microglia-derived lysosomal cathepsins have been increasingly recognized as important inflammatory mediators that trigger signaling pathways that aggravate neuroinflammation. In vitro, a contribution to neuroinflammation processes has been shown for cathepsin X: however, the expression patterns and functional role of cathepsin X in neuroinflammatory brain pathology remain elusive. In this study we analyzed the expression, activity, regional distribution and cellular localization of cathepsin X in the rat brain with neuroinflammation-induced neurodegeneration. The unilateral injection of lipopolysaccharide (LPS) induced a strong upregulation of cathepsin X expression and its activity in the ipsilateral striatum. In addition to the striatum, cathepsin X overexpression was detected in other brain areas such as the cerebral cortex, corpus callosum, subventricular zone and external globus pallidus, whereas the upregulation was mainly restricted to activated microglia and reactive astrocytes. Continuous administration of the cathepsin X inhibitor AMS36 indicated protective effects against LPS-induced striatal degeneration, as seen by the attenuated LPS-mediated dilation of the lateral ventricles and partial decreased extent of striatal lesion. Taken together, our results indicate that cathepsin X plays a role as a pathogenic factor in neuroinflammation-induced neurodegeneration and represents a potential therapeutic target for neurodegenerative diseases associated with neuroinflammation.


2020 ◽  
Vol 193 ◽  
pp. 112218
Author(s):  
Urša Pečar Fonović ◽  
Damijan Knez ◽  
Martina Hrast ◽  
Nace Zidar ◽  
Matic Proj ◽  
...  

Synfacts ◽  
2020 ◽  
Vol 16 (05) ◽  
pp. 0598
Keyword(s):  

2020 ◽  
Vol 15 (3) ◽  
pp. 718-727 ◽  
Author(s):  
Simon J. Mountford ◽  
Bethany M. Anderson ◽  
Bangyan Xu ◽  
Elean S. V. Tay ◽  
Monika Szabo ◽  
...  

2019 ◽  
pp. 58-61 ◽  
Author(s):  
Urša Pečar Fonović ◽  
Milica Perišić Nanut ◽  
Nace Zidar ◽  
Brigita Lenarčič ◽  
Janko Kos

Sign in / Sign up

Export Citation Format

Share Document