Petrogenesis, W metallogenic and tectonic implications of granitic intrusions in the southern Great Xing’an Range W belt, NE China: insights from the Narenwula Complex

2022 ◽  
pp. 1-35
Author(s):  
Wei Xie ◽  
Qing-Dong Zeng ◽  
Jin-Hui Yang ◽  
Rui Li ◽  
Zhuang Zhang ◽  
...  

Abstract Extensive magmatism in NE China, eastern Central Asian Orogenic Belt, has produced multi-stage granitic plutons and accompanying W mineralization. The Narenwula complex in the southwestern Great Xing’an Range provides important insights into the petrogenesis, geodynamic processes and relationship with W mineralization. The complex comprises granodiorites, monzogranites and granite porphyry. Mafic microgranular enclaves are common in the granodiorites, and have similar zircon U–Pb ages as their host rocks (258.5–253.9 Ma), whereas the W-bearing granitoids yield emplacement ages of 149.8–148.1 Ma. Permian granodiorites are I-type granites that are enriched in large-ion lithophile elements and light rare earth elements, and depleted in high field strength elements and heavy rare earth elements. Both the mafic microgranular enclaves and granodiorites have nearly identical zircon Hf isotopic compositions. The results suggest that the mafic microgranular enclaves and granodiorites formed by the mixing of mafic and felsic magmas. W-bearing granitoids are highly fractionated A-type granites, enriched in Rb, Th, U and Pb, and depleted in Ba, Sr, P, Ti and Eu. They have higher W concentrations and Rb/Sr ratios, and lower Nb/Ta, Zr/Hf and K/Rb ratios than the W-barren granodiorites. These data and negative ϵHf(t) values (–6.0 to –2.1) suggest that they were derived from the partial melting of ancient lower crust and subsequently underwent extreme fractional crystallization. Based on the regional geology, we propose that the granodiorites were generated in a volcanic arc setting related to the subduction of the Palaeo-Asian Ocean, whereas the W-bearing granitoids and associated deposits formed in a post-orogenic extensional setting controlled by the Mongol–Okhotsk Ocean and Palaeo-Pacific Ocean tectonic regimes.

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Nan Ju ◽  
Yun-Sheng Ren ◽  
Sen Zhang ◽  
Zhong-Wei Bi ◽  
Lei Shi ◽  
...  

The Saima deposit is a newly discovered niobium deposit which is located in the eastern of Liaoning Province, NE China. Its mineralization age and geochemical characteristics are firstly reported in this study. The Nb orebodies are hosted by the grey–brown to grass-green aegirine nepheline syenite. Detailed petrographical studies show that the syenite consists of orthoclase (~50%), nepheline (~30%), biotite (~15%) and minor arfvedsonite (~3%) and aegirine (~2%), with weak hydrothermal alteration dominated by silicification. In situ LA-ICP-MS zircon U-Pb dating indicates that the aegirine nepheline syenite was emplaced in the Late Triassic (229.5 ± 2.2 Ma), which is spatially, temporally and genetically related to Nb mineralization. These aegirine nepheline syenites have SiO2 contents in the range of 55.86–63.80 wt. %, low TiO2 contents of 0.36–0.64 wt. %, P2O5 contents of 0.04–0.11 wt. % and Al2O3 contents of more than 15 wt. %. They are characterized by relatively high (K2O + Na2O) values of 9.72–15.51 wt. %, K2O/Na2O ratios of 2.42–3.64 wt. % and Rittmann indexes (σ = [ω(K2O + Na2O)]2/[ω(SiO2 − 43)]) of 6.84–17.10, belonging to the high-K peralkaline, metaluminous type. These syenites are enriched in large ion lithophile elements (LILEs, e.g., Cs, Rb and Ba) and light rare earth elements (LREEs) and relatively depleted in high field strength elements (HFSEs, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREEs), with transitional elements showing an obvious W-shaped distribution pattern. Based on these geochronological and geochemical features, we propose that the ore-forming intrusion associated with the Nb mineralization was formed under post-collision continental-rift setting, which is consistent with the tectonic regime of post-collision between the North China Craton and Paleo-Asian oceanic plate during the age in Ma for Indosinian (257–205 Ma). Intensive magmatic and metallogenic events resulted from partial melting of lithospheric mantle occurred during the post-collisional rifting, resulting in the development of large-scale Cu–Mo mineralization and rare earth deposits in the eastern part of Liaoning Province.


2020 ◽  
Vol 12 (1) ◽  
pp. 148-162
Author(s):  
Lawangin Sheikh ◽  
Wasiq Lutfi ◽  
Zhidan Zhao ◽  
Muhammad Awais

AbstractIn this study, zircon grains are applied for U–Pb dating, Hf isotopes and trace elements to reveal the origin of magmatism and tectonic evolution of Late Paleozoic rocks of the Indian plate, Northern Pakistan. Most of the zircons are characterized by oscillatory zoning, depletion of light rare earth elements (LREE) and enrichment of heavy rare earth elements (HREE) with Ce and Eu anomalies. The yielded ages for these rocks are 256 ± 1.9 Ma and are plotted in the zones defined for the continental setting with few deviated toward the mid-oceanic ridge and the oceanic arc setting. Deviated zircons are recognized as inherited zircons by displaying a high concentration of normalized primitive La and Pr values, while others are plotted in the continental zones. Rare earth elements (REE) and trace elements including Th, Hf, U, Nb, Sc and Ti discriminate Swat orthogneisses into the within plate setting and the inherited zircons are plotted in the orogenic or the arc-related setting. The LREE discriminated these zircons into a magmatic zone with inherited zircons deviated toward the hydrothermal zone. The temperature calculated for these rocks based on the Ti content in zircon ranges from 679 to 942°C. The εHf(t) ranging from −11.1 to +1.4 reveals that the origin is the continental crust with the minute input of the juvenile mantle.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1059
Author(s):  
Miao He ◽  
Qing Liu ◽  
Quanlin Hou ◽  
Jinfeng Sun ◽  
Quanren Yan

The South China Block had experienced a significant tectonic transition during the Mesozoic in response to the subduction of the Paleo- and the Pacific Ocean. Large-scale granitic intrusions with massive mineralization are widespread in South China, and their tectonic settings are not defined. The Xitian intrusion is ideal for probing the geodynamic setting and mineralization in South China because they comprise an abundance of microgranular enclaves (MEs) and diverse types of granite associated with mineralization. Age determined by zircon U-Pb dating suggests that the MEs and their host granites are coeval within error, of ca. 152 Ma. The MEs have a similar initial Hf-O isotopic composition as host granites, and the rapid cooling mineral textures indicate that they are autoliths. Geochemical data show that the host granites are high-K, calc-alkaline, and transitional from metaluminous to peraluminous, slightly enriched in light rare earth elements (LREEs) relative to heavy rare earth elements (HREEs), with obvious negative Eu anomalies, belonging to I-type. The Nb/Ta and Zr/Hf ratios indicate the volatile penetrates the magmatic-forming process, and the fluid with abundant volatile could extract metal element effectively from the mantle.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Galler ◽  
Semih Ener ◽  
Fernando Maccari ◽  
Imants Dirba ◽  
Konstantin P. Skokov ◽  
...  

AbstractCerium-based intermetallics are currently attracting much interest as a possible alternative to existing high-performance magnets containing scarce heavy rare-earth elements. However, the intrinsic magnetic properties of Ce in these systems are poorly understood due to the difficulty of a quantitative description of the Kondo effect, a many-body phenomenon where conduction electrons screen out the Ce-4f moment. Here, we show that the Ce-4f shell in Ce–Fe intermetallics is partially Kondo screened. The Kondo scale is dramatically enhanced by nitrogen interstitials suppressing the Ce-4f contribution to the magnetic anisotropy, in striking contrast to the effect of nitrogenation in isostructural intermetallics containing other rare-earth elements. We determine the full temperature dependence of the Ce-4f single-ion anisotropy and show that even unscreened Ce-4f moments contribute little to the room-temperature intrinsic magnetic hardness. Our study thus establishes fundamental constraints on the potential of cerium-based permanent magnet intermetallics.


2016 ◽  
Vol 159 ◽  
pp. 157-160 ◽  
Author(s):  
Takeshi Ogata ◽  
Hirokazu Narita ◽  
Mikiya Tanaka ◽  
Mihoko Hoshino ◽  
Yoshiaki Kon ◽  
...  

2021 ◽  
pp. 1-41
Author(s):  
Lianfu Hai ◽  
Qinghai Xu ◽  
Caixia Mu ◽  
Rui Tao ◽  
Lei Wang ◽  
...  

In the Tanshan area, which is at the Liupanshui Basin, abundant oil shale resources are associated with coals. We analyzed the cores, geochemistry of rare earth elements (REE) and trace element of oil shale with ICP-MS technology to define the palaeo-sedimentary environment, material source and geological significance of oil shale in this area. The results of the summed compositions of REE, and the total REE contents (SREE), in the Yan'an Formation oil shale are slightly higher than the global average of the composition of the upper continental crustal (UCC) and are lower than that of North American shales. The REE distribution pattern is characterized by right-inclined enrichment of light rare earth elements (LREE) and relative loss of heavy rare earth elements (HREE), which reflects the characteristics of crustal source deposition. There is a moderate degree of differentiation among LREE, while the differences among HREE are not obvious. The dEu values show a weak negative anomaly and the dCe values show no anomaly, which are generally consistent with the distribution of REE in the upper crust. The characteristics of REE and trace elements indicate that the oil shale formed in an oxygen-poor reducing environment and that the paleoclimatic conditions were relatively warm and humid. The degree of differentiation of REE indicates that the sedimentation rate in the study area was low, which reflected the characteristics of relatively deep sedimentary water bodies and distant source areas. The results also proved that the source rock mainly consisted of calcareous mudstone, and a small amount of granite was also mixed in.


2012 ◽  
Vol 43 (3) ◽  
pp. 262-274 ◽  
Author(s):  
J. Borrego ◽  
B. Carro ◽  
N. López-González ◽  
J. de la Rosa ◽  
J. A. Grande ◽  
...  

The concentration of rare earth elements together with Sc, Y, and U, as well as rare earth elements fractionation patterns, in the water of an affected acid mine drainage system were investigated. Significant dissolved concentrations of the studied elements were observed in the fluvial sector of this estuary system (Sc ∼ 31 μg L−1, Y ∼ 187 μg L−1, U ∼ 41 μg L−1, Σ rare earth elements ∼621 μg L−1), with pH values below 2.7. In the mixing zone of the estuary, concentrations are lower (Sc ∼ 2.1 μg L−1; Y ∼ 16.7 μg L−1; U ∼ 4.8 μg L−1; Σ rare earth elements ∼65.3 μg L−1) and show a strong longitudinal gradient. The largest rare earth elements removal occurs in the medium-chlorinity zone and it becomes extreme for heavy rare earth elements, as observed for Sc. Samples of the mixing zone show a North American Shale normalized pattern similar to the fluvial zone water, while the samples located in the zone with pH between 6.5 and 7.7 show a depletion of light rare earth elements relative to middle rare earth elements and heavy rare earth elements, similar to that observed in samples of the marine estuary.


2016 ◽  
Vol 25 (4) ◽  
pp. 60-67
Author(s):  
Sungeun Lee ◽  
Joung Woon Kim ◽  
Jong Hyuk Jeon ◽  
Hong Myeong Jun ◽  
Jin Young Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document