failure mode transition
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 2083 (2) ◽  
pp. 022088
Author(s):  
Wenqing Jia ◽  
Xiangbing Liu ◽  
Minyu Fan ◽  
Chaoliang Xu ◽  
Yuanfei Li ◽  
...  

Abstract The ferrite plays an important role in key component materials for nuclear power plant. The study was performed on ferritic alloys with various Cr content ranging from 10 to 38wt%. The Vickers-hardness and mechanical test results indicate that the high Cr content will cause a hardening and strengthening effect on the ferrite steel. Meanwhile, it can be concluded that the ferritic alloy suffers a reduction of toughness and a failure mode transition from ductile to brittle fracture with the increasing Cr content from the SEM fractography analysis.


2019 ◽  
Vol 212 ◽  
pp. 197-209 ◽  
Author(s):  
Dongyang Chu ◽  
Xiang Li ◽  
Zhanli Liu ◽  
Junbo Cheng ◽  
Tao Wang ◽  
...  

2018 ◽  
Vol 157 ◽  
pp. 06003 ◽  
Author(s):  
Ladislav Écsi ◽  
Pavel Élesztos ◽  
Roland Jančo

In this paper an alternative J2 material model with isotropic hardening for finite-strain elastoplastic analyses is presented. The model is based on a new nonlinear continuum mechanical theory of finite deformations of elastoplastic media which allows us to describe the plastic flow in terms of various instances of the yield surface and corresponding stress measures in the initial and current configurations of the body. The approach also allows us to develop thermodynamically consistent material models in every respect. Consequently, the models not only do comply with the principles of material modelling, but also use constitutive equations, evolution equations and even ‘normality rules’ during return mapping which can be expressed in terms of power conjugate stress and strain measures or their objective rates. Therefore, such models and the results of the analyses employing them no longer depend on the description and the particularities of the material model formulation. Here we briefly present an improved version of our former material model capable of modelling ductile-to brittle failure mode transition and demonstrate the model in a numerical example using a fully coupled thermal-structural analysis.


Sign in / Sign up

Export Citation Format

Share Document