circular current
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Vitalii Degtyarev ◽  
George Popov ◽  
Svetlana Chudnenko

The energy inflow from the solar wind into the magnetosphere and its dissipation in the circular current and auroral ionosphere during maximums of magnetic storm intensity are considered. All magnetic storms with Dst intensities from –18 nT to –422 nT for the period from 1996 to 2014 were divided into groups. For each group, the mean contribution of energy from the solar wind to the magnetosphere and subsequent characteristics of the energy dissipation in the auroral ionosphere and circular current were determined by the superposed epoch analysis method. The nonlinearity of the dependence of the intensity of magnetic storms on the energy coming from the solar wind into the magnetosphere was revealed. Anomalous behavior of magnetic storms with intensity |Dst| > 200 nT was detected. A discussion of the results is given.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haowei Xu ◽  
Hua Wang ◽  
Jian Zhou ◽  
Yunfan Guo ◽  
Jing Kong ◽  
...  

AbstractNonlinear optical properties, such as bulk photovoltaic effects, possess great potential in energy harvesting, photodetection, rectification, etc. To enable efficient light–current conversion, materials with strong photo-responsivity are highly desirable. In this work, we predict that monolayer Janus transition metal dichalcogenides (JTMDs) in the 1T′ phase possess colossal nonlinear photoconductivity owing to their topological band mixing, strong inversion symmetry breaking, and small electronic bandgap. 1T′ JTMDs have inverted bandgaps on the order of 10 meV and are exceptionally responsive to light in the terahertz (THz) range. By first-principles calculations, we reveal that 1T′ JTMDs possess shift current (SC) conductivity as large as 2300 nm μA V−2, equivalent to a photo-responsivity of 2800 mA/W. The circular current (CC) conductivity of 1T′ JTMDs is as large as ∼104 nm μA V−2. These remarkable photo-responsivities indicate that the 1T′ JTMDs can serve as efficient photodetectors in the THz range. We also find that external stimuli such as the in-plane strain and out-of-plane electric field can induce topological phase transitions in 1T′ JTMDs and that the SC can abruptly flip their directions. The abrupt change of the nonlinear photocurrent can be used to characterize the topological transition and has potential applications in 2D optomechanics and nonlinear optoelectronics.


Author(s):  
Kai Meng ◽  
Yong Gu ◽  
Jianhui Ma ◽  
Xidong Liu ◽  
Xiangqian Geng ◽  
...  

In this study, a novel negative stiffness spring is developed. The developed spring possesses the characteristics of the controllable stiffness and can be employed in vibration isolation system with a low resonance frequency. The controllable electromagnetic negative stiffness spring (CENSS) is obtained by the coaxial permanent magnets (PMs) and the circular current-carrying coils. The stiffness control is accomplished by changing the current in the coils. Furthermore, the mathematical model of CENSS is established, based on the filament method. According to the model, the relationship between the exciting current and the axial stiffness is obtained. Moreover, the influence of the structural parameters of CENSS on the magnetic force and the stiffness is analyzed. The results demonstrate that the thickness of PMs and the coils have the ability to adjust the range of the negative stiffness. Finally, performance experimental study of CENSS in the stiffness domain is carried out under different exciting currents and thicknesses. The experimental results have shown a good agreement with the model. It demonstrates that the performance of negative stiffness in CENSS can be controlled efficiently by the exciting current and optimized by the thickness.


2020 ◽  
pp. SP505-2019-102
Author(s):  
Petro F. Gozhik ◽  
Valery E. Rokitsky

AbstractThis paper provides analysis of the published materials on the occurrences of the Dacian and Cimmerian molluscs in the Danube River valley as well as the results of Pliocene sediments study based on core material of the boreholes drilled at the Black Sea Shelf east of the Danube River Delta.In the early Pontian time, the Dacian Basin was a large sub-basin of Paratethys which, due to an abrupt drop in sea level, separated into the Euxinian, Dacian and Caspian basins. At the end of the Bosphorus time, the discharge of the Dacian Basin waters into the Euxinian Basin formed a wide valley from the Galati-Reni region to the east through the Galati gateway. During the Cimmerian transgression, a vast bay existed on the site of the modern Danube Delta, from which mutual migrations of the Dacian and Cimmerian molluscs took place along the runoff valley. The cessation of runoff occurred during the regressive phase of the Late Cimmerian. The rhythmically bedded thick strata originated during the existence of the runoff valley. These strata were identified as the Pridanubian Formation (Suite). The cryptogenic form of Tulotoma Tulotoma (=Viviparus) ovidii nasonis (Bogachev) is characteristic of the lower and middle parts of the suite. The presence of the Dacian and Cimmerian molluscs in this suite became the basis for the correlation of sediments of the Dacian and Cimmerian regional stages. The Duabian molluscs were registered in the Cimmerian deposits of the Transcaucasus (the Duabian layers), Priazovye and the Kerch–Taman region. The migration of these molluscs took place during the regressive phases due to the circular current in the Euxinian Basin similar to the one existing in the Black Sea today.The Pliocene formation contains marine and continental deposits of the Lower and Upper Pliocene, which are represented by the Pridanubian Formation (Lower and Upper), Cimmerian deposits (non-subdivided Lower and Middle Cimmerian), Lower Kujalnician deposits, Upper Poration deposits, complex of red-coloured palaeosols (the Upper Miocene–Lower Pliocene non-subdivided).The formation of the Pliocene sediments on the Black Sea Shelf, east of the Danube Delta, was controlled by the inter-basin connectivity of the Eastern Paratethys.


2020 ◽  
Author(s):  
Zhaojin Rong ◽  
Yong Wei ◽  
Wenyao Xu ◽  
Dali Kong ◽  
Jun Cui ◽  
...  

<p>A quick and effective technique is developed to diagnose the geomagnetic dipole field based on an unstrained single circular current loop model. In comparsion with previous studies, this technique is able to separate and solve the loop parameters successively. With this technique, one can search the optimum full loop parameters quickly, including the location of loop center, the loop orientation, the loop radius, and the electric current carried by the loop, which can roughly indicate the locations, sizes, orientations of the interior current sources. The technique tests and applications demonstrate that this technique is effective and applicable. This technique could be applied widely in the fields of geomagnetism, planetary magnetism and palaeomagnetism. The further applications and constrains are discussed and cautioned.</p>


Sign in / Sign up

Export Citation Format

Share Document