scholarly journals Colossal switchable photocurrents in topological Janus transition metal dichalcogenides

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Haowei Xu ◽  
Hua Wang ◽  
Jian Zhou ◽  
Yunfan Guo ◽  
Jing Kong ◽  
...  

AbstractNonlinear optical properties, such as bulk photovoltaic effects, possess great potential in energy harvesting, photodetection, rectification, etc. To enable efficient light–current conversion, materials with strong photo-responsivity are highly desirable. In this work, we predict that monolayer Janus transition metal dichalcogenides (JTMDs) in the 1T′ phase possess colossal nonlinear photoconductivity owing to their topological band mixing, strong inversion symmetry breaking, and small electronic bandgap. 1T′ JTMDs have inverted bandgaps on the order of 10 meV and are exceptionally responsive to light in the terahertz (THz) range. By first-principles calculations, we reveal that 1T′ JTMDs possess shift current (SC) conductivity as large as 2300 nm μA V−2, equivalent to a photo-responsivity of 2800 mA/W. The circular current (CC) conductivity of 1T′ JTMDs is as large as ∼104 nm μA V−2. These remarkable photo-responsivities indicate that the 1T′ JTMDs can serve as efficient photodetectors in the THz range. We also find that external stimuli such as the in-plane strain and out-of-plane electric field can induce topological phase transitions in 1T′ JTMDs and that the SC can abruptly flip their directions. The abrupt change of the nonlinear photocurrent can be used to characterize the topological transition and has potential applications in 2D optomechanics and nonlinear optoelectronics.

Nanoscale ◽  
2021 ◽  
Author(s):  
Zihao He ◽  
Xingyao Gao ◽  
Di Zhang ◽  
Ping Lu ◽  
Xuejing Wang ◽  
...  

Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide...


2020 ◽  
Vol 116 (5) ◽  
pp. 053101 ◽  
Author(s):  
Christopher J. Brennan ◽  
Kalhan Koul ◽  
Nanshu Lu ◽  
Edward T. Yu

2018 ◽  
Vol 9 ◽  
pp. 780-788 ◽  
Author(s):  
Haitao Chen ◽  
Mingkai Liu ◽  
Lei Xu ◽  
Dragomir N Neshev

Background: Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) with intrinsically crystal inversion-symmetry breaking have shown many advanced optical properties. In particular, the valley polarization in 2D TMDCs that can be addressed optically has inspired new physical phenomena and great potential applications in valleytronics. Results: Here, we propose a TMDC–nanoantenna system that could effectively enhance and direct emission from the two valleys in TMDCs into diametrically opposite directions. By mimicking the emission from each valley of the monolayer of WSe2 as a chiral point-dipole emitter, we demonstrate numerically that the emission from different valleys is directed into opposite directions when coupling to a double-bar plasmonic nanoantenna. The directionality derives from the interference between the dipole and quadrupole modes excited in the two bars, respectively. Thus, we could tune the emission direction from the proposed TMDC–nanoantenna system by tuning the pumping without changing the antenna structure. Furthermore, we discuss the general principles and the opportunities to improve the average performance of the nanoantenna structure. Conclusion: The scheme we propose here can potentially serve as an important component for valley-based applications, such as non-volatile information storage and processing.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17572-17581 ◽  
Author(s):  
Hongsheng Liu ◽  
Nannan Han ◽  
Jijun Zhao

Monolayer transition metal dichalcogenides (TMDs) stand out in two-dimensional (2D) materials due to their potential applications in future microelectronic and optoelectronic devices.


Nano Energy ◽  
2019 ◽  
Vol 58 ◽  
pp. 57-62 ◽  
Author(s):  
Seunghun Kang ◽  
Sera Kim ◽  
Sera Jeon ◽  
Woo-Sung Jang ◽  
Daehee Seol ◽  
...  

2018 ◽  
Vol 20 (1) ◽  
pp. 553-561 ◽  
Author(s):  
Qinglong Fang ◽  
Xumei Zhao ◽  
Yuhong Huang ◽  
Kewei Xu ◽  
Tai Min ◽  
...  

Ferromagnetic (FM) two-dimensional (2D) transition metal dichalcogenides (TMDs) have potential applications in modern electronics and spintronics and doping of TMDs with transition metals can enhance the magnetic characteristics.


Sign in / Sign up

Export Citation Format

Share Document