spectral calibration
Recently Published Documents


TOTAL DOCUMENTS

258
(FIVE YEARS 47)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Guodong Zhou ◽  
Jianhui Li ◽  
Yanqiu Li ◽  
Yuanhe Li

Author(s):  
G. Matthews

AbstractBetter predictions of global warming can be enabled by tuning legacy and current computer simulations to Earth Radiation Budget (ERB) measurements. Since the 1970’s, such orbital results exist, and the next generation instruments called “Libera” are in design. Climate communities have requested that ERB observing system calibration accuracy obtain significantly better SI traceability and stability improvements. This is to prevent untracked instrument calibration drifts, that could lead to false conclusions on climate change. Based on experience from previous ERB missions, the concept presented here utilizes solar calibration for cloud size Earth measurement resolution, at ≪1% accuracy. However it neglects shown to be unsuccessful calibration technology like solar diffusers and on-board lights, as used by ERBE, ScaRaB, CERES, GERB & other Libera designs etc. New spectral characterizing concepts are therefore introduced. This allows in-flight wavelength dependent calibration of Earth observing Libera telescopes using direct solar views, through narrow-band filters continuously characterized on-orbit.


2021 ◽  
Author(s):  
Norshamsuri Ali ◽  
Syed Alwee Aljunid Syed Junid ◽  
Nor Azura Malini Ahmad ◽  
Mohd Rashidi Che Beson ◽  
Rosdisham Endut

An optical system model for the identification of Carbon-Hydrogen stretching using spectroscopy is demonstrated and applied to the experiment setup. The optical simulation is achieved using simulation software and performed in a two-mirror system. The optical setup covers a wavelength range of 600 nm to 1200 nm which is a new study based on carbon-hydrogen stretch and test with samples from the alkene group. Significant results of the Carbon-Hydrogen stretch from the alkene group at 1149 nm are detected in Dichloromethane and ethanol. This observation is recorded in real-time and applied in a fast diagnostic system. The isosbestic point of water is measured at 970 nm and useful for our system spectral calibration. The result also shows the ability to quantify the chemical bond of a sample based on two peaks of absorption due to the C-H stretching. This gives a better opportunity for Chemometrics to perform accurately.


2021 ◽  
Author(s):  
Rowena Schultz ◽  
Matthias Klemm ◽  
Daniel Meller ◽  
Martin Hammer

2021 ◽  
Author(s):  
Simon Trim ◽  
Kimberley Mason ◽  
Andreas Hueni
Keyword(s):  

2021 ◽  
Vol 14 (5) ◽  
pp. 3737-3753
Author(s):  
Carly Staebell ◽  
Kang Sun ◽  
Jenna Samra ◽  
Jonathan Franklin ◽  
Christopher Chan Miller ◽  
...  

Abstract. MethaneAIR is the airborne simulator of MethaneSAT, an area-mapping satellite currently under development with the goal of locating and quantifying large anthropogenic CH4 point sources as well as diffuse emissions at the spatial scale of an oil and gas basin. Built to closely replicate the forthcoming satellite, MethaneAIR consists of two imaging spectrometers. One detects CH4 and CO2 absorption around 1.65 and 1.61 µm, respectively, while the other constrains the optical path in the atmosphere by detecting O2 absorption near 1.27 µm. The high spectral resolution and stringent retrieval accuracy requirements of greenhouse gas remote sensing in this spectral range necessitate a reliable spectral calibration. To this end, on-ground laboratory measurements were used to derive the spectral calibration of MethaneAIR, serving as a pathfinder for the future calibration of MethaneSAT. Stray light was characterized and corrected for through fast-Fourier-transform-based Van Cittert deconvolution. Wavelength registration was examined and found to be best described by a linear relationship for both bands with a precision of ∼ 0.02 spectral pixel. The instrument spectral spread function (ISSF), measured with fine wavelength steps of 0.005 nm near a series of central wavelengths across each band, was oversampled to construct the instrument spectral response function (ISRF) at each central wavelength and spatial pixel. The ISRFs were smoothed with a Savitzky–Golay filter for use in a lookup table in the retrieval algorithm. The MethaneAIR spectral calibration was evaluated through application to radiance spectra from an instrument flight over the Colorado Front Range.


2021 ◽  
Author(s):  
Carly Staebell ◽  
Kang Sun ◽  
Jenna Samra ◽  
Jonathan Franklin ◽  
Christopher Chan Miller ◽  
...  

Abstract. MethaneAIR is the airborne simulator of MethaneSAT, an area-mapping satellite currently under development with the goal of locating and quantifying large anthropogenic point CH4 sources as well as diffuse basin-scale emissions. Built to closely replicate the forthcoming satellite, MethaneAIR consists of two imaging spectrometers. One detects CH4 and CO2 absorption around 1.65 and 1.61 μm, respectively, while the other constrains the optical path in the atmosphere by detecting O2 absorption near 1.27 μm. The high spectral resolution and stringent retrieval accuracy requirements of greenhouse gas remote sensing in this spectral range necessitate a reliable spectral calibration. To this end, on-ground laboratory measurements were used to derive the spectral calibration of MethaneAIR, serving as a pathfinder for the future calibration of MethaneSAT. Stray light was characterized and corrected through Fast Fourier Transform (FFT)-based Van Cittert deconvolution. Wavelength registration was examined and found to be best described by a linear relationship for both bands with a precision of ~0.02 spectral pixel. The instrument spectral spread function (ISSF), measured with fine wavelength steps of 0.005 nm near a series of central wavelengths across each band, was oversampled to construct the instrument spectral response function (ISRF) at each central wavelength and spatial pixel. The ISRFs were smoothed with a Savitzky-Golay filter for use in a lookup table in the retrieval algorithm. The MethaneAIR spectral calibration was evaluated through application to radiance spectra from an instrument flight over the Colorado Front Range.


Sign in / Sign up

Export Citation Format

Share Document