oxide crystal
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Jin Jegal ◽  
Dongwoo Jeong ◽  
Eun-Suk Seo ◽  
HyeoungWoo Park ◽  
Hongjoo Kim

Abstract A hermetic novel detector composed of 200 Bismuth germanium oxide crystal scintillators and 393 channel silicon photomultipliers has been developed for positronium (Ps) annihilation study. This compact 4π detector is capable of simultaneously detecting γ-ray decay in all directions, enabling not only the study of visible and invisible exotic decay processes but also tumor localization in positron emission tomography for small animals. In this study, we investigate the use of a convolutional neural network (CNN) for the localization of the Ps annihilation synonymous with tumor localization. The 2-γ decay systems of the Ps annihilation from the 22Na and 18F radioactive sources are simulated using GEANT4. The simulated data sets are preprocessed by applying energy cuts. The spatial error in the XY plane from CNN is compared to that from the classical centroiding, weighted k-means algorithm. The feasibility of the CNN-based Ps an-nihilation reconstruction with tumor localization is discussed.


Author(s):  
Mikhail Bryushinin ◽  
Vladimir Kulikov ◽  
Alexander Petrov ◽  
Igor Sokolov ◽  
Roman Romashko ◽  
...  

Abstract We report the nonstationary holographic current excitation in a β-Ga2O3 crystal at light wavelength λ=457 nm. The material demonstrates insulating properties and high transparency for a visible light, but this, however, does not prevent the dynamic space-charge grating formation and the holographic current observation for various external electric fields - zero, dc and ac ones. The signal amplitude is measured and analyzed versus the frequency of phase modulation, spatial frequency and electric field value. The main photoelectric parameters such as specific photoconductivity, sensor responsivity and diffusion length of carriers are determined for the blue region of spectrum.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012163
Author(s):  
M A Bryushinin ◽  
I A Sokolov

Abstract We report the excitation of nonstationary holographic currents in a monoclinic gallium oxide crystal. Although the crystal is almost transparent and insulating for a visible light, the dynamic space-charge gratings are recorded and holographic currents are observed for both the diffusion and drift modes. The anisotropy along the [100] and [010] directions is revealed, namely, there is a small difference in the transport parameters and a pronounced polarization dependence of the signal. The crystal’s photoconductivity, responsivity and diffusion length of electrons are estimated for the light wavelength λ = 457 nm.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Yuzhou Wang ◽  
Fei Liang ◽  
Jiyang Wang ◽  
Dazhi Lu ◽  
Haohai Yu ◽  
...  

A high optical quality 60 mm-diameter LGN crystal with wide transparency was grown by the Czochralski method. The origin of the wide transparency as for a traditional oxide crystal was investigated from the viewpoint of crystal symmetry.


2020 ◽  
pp. 2150148
Author(s):  
Jiamei Song ◽  
Tingyu Liu ◽  
Chunyu Shi ◽  
Ruxi Sun ◽  
Kaili Wu

In this paper, we calculated the defect formation energy of oxygen vacancies with different charge states (0, +1, +2) in beryllium oxide crystal by using density functional theory (DFT). Based on defect formation energy, the positions of charge transition levels are obtained. However, there is a well-known problem that DFT will underestimate the band gap, which leads to the positions of charge transition levels are arguable. To obtain more accurate charge transition levels, we employ the hybrid functionals (HSE) to relieve the band edge problem, as well as use the finite-size corrections (FNV) to correct the defect formation energy. After obtaining the location of the charge transition level, we obtain a reliable description of the optical line shape of the F/F[Formula: see text] center containing electron–phonon coupling. The absorption spectra of the F center and F[Formula: see text] center peak at 7.1 eV and 6.3 eV, respectively. The luminescence band of the F center peaks at 4.7 eV. Furthermore, we speculate that the luminescence band near 3.7 eV is assigned to the F[Formula: see text] center.


2020 ◽  
Vol 53 (5) ◽  
pp. 1243-1251
Author(s):  
D. Hamani ◽  
O. Masson ◽  
P. Thomas

A simple method has been developed based on pure geometrical concepts to localize lone pairs (LPs) of cations of the p-block elements and model their steric effect. The method was applied to 1185 structures containing LP cations in 2439 non-equivalent positions. For oxide crystal structures, it is observed that, going from bottom left to top right in the periodic table, LPs move away from the cation core and decrease in size. For a given kind of cation M*, the LP radius increases linearly with the M*–LP distance, the smallest rate being observed for Tl+ and the largest for Cl5+. The influence of the anion type was also studied in the case of the Te4+ cation. Overall, the same trends were observed. The smallest Te–LP distances and LP radii are found for anions of large size and small charge.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 529-536
Author(s):  
Aline Marian ◽  
Gerhard Maas

AbstractThe title compounds are difunctionalized acetylenic building blocks, which can serve as electrophilic dienophiles and dipolarophiles in [4+2] and azide-iodoalkyne [3+2] cycloaddition reactions, which, however, require strong thermal activation. In their crystal structures, they are self-complementary tectons, which are arranged in polymeric chains maintained by very short intermolecular Csp–I···O=P halogen bonds.


Sign in / Sign up

Export Citation Format

Share Document