scholarly journals Nonstationary holographic currents in a β-Ga2O3 crystal at wavelength λ = 457 nm

2021 ◽  
Vol 2103 (1) ◽  
pp. 012163
Author(s):  
M A Bryushinin ◽  
I A Sokolov

Abstract We report the excitation of nonstationary holographic currents in a monoclinic gallium oxide crystal. Although the crystal is almost transparent and insulating for a visible light, the dynamic space-charge gratings are recorded and holographic currents are observed for both the diffusion and drift modes. The anisotropy along the [100] and [010] directions is revealed, namely, there is a small difference in the transport parameters and a pronounced polarization dependence of the signal. The crystal’s photoconductivity, responsivity and diffusion length of electrons are estimated for the light wavelength λ = 457 nm.

Author(s):  
Mikhail Bryushinin ◽  
Vladimir Kulikov ◽  
Alexander Petrov ◽  
Igor Sokolov ◽  
Roman Romashko ◽  
...  

Abstract We report the nonstationary holographic current excitation in a β-Ga2O3 crystal at light wavelength λ=457 nm. The material demonstrates insulating properties and high transparency for a visible light, but this, however, does not prevent the dynamic space-charge grating formation and the holographic current observation for various external electric fields - zero, dc and ac ones. The signal amplitude is measured and analyzed versus the frequency of phase modulation, spatial frequency and electric field value. The main photoelectric parameters such as specific photoconductivity, sensor responsivity and diffusion length of carriers are determined for the blue region of spectrum.


1990 ◽  
Vol 182 ◽  
Author(s):  
Z. Chen ◽  
L.C. Burton

Abstract; Grain boundary (GB) recombination is a controlling factor in the electronic properties of polycrystalline silicon. We would like to report computer modeling of the variation of electron transport parameters with depth, under illumination. The GB barrier height (Vg) versus photogeneration rate G and depth are presented, along with the resulting electron lifetime (π), mobility (µ) and diffusion length (L). Under AM1 illumination, Vg increases whereas -π, µ and L all decrease drastically with increasing depth. The GB trap density is used as a parameter, and strongly influences transport parameters in both dark and light cases.


2009 ◽  
Vol 129 (7) ◽  
pp. 463-469 ◽  
Author(s):  
Tomo Tadokoro ◽  
Takuo Motoyama ◽  
Hiroshi Harada ◽  
Yasuhiro Tanaka ◽  
Tastuo Takada ◽  
...  

1995 ◽  
Vol 377 ◽  
Author(s):  
G. J. Adriaenssens ◽  
B. Yan ◽  
A. Eliat

ABSTRACTA full and detailed transient space-charge-limited current (T-SCLC) study of a-Si:H p-i-n diodes has been carried out in the time range from 108s to 10s. In the short-time regime, general features of T-SCLC such as the current cusp and the carrier extraction period were observed, and related transport parameters were deduced. Electron emission from deep states was studied by measuring the current transients well beyond the extraction time. The emission time is thermally activated at temperatures higher than 250K and levels off at lower temperatures. The high temperature behaviour places the upper edge of the deep states at 0.42–0.52eV below the conduction band edge, and the attempt-to-escape frequency in the range of 1011-1013Hz. An observed shift of emission time with light intensity is attributed to defect relaxation.


2019 ◽  
Vol 96 ◽  
pp. 155-162 ◽  
Author(s):  
P.C. Klipstein ◽  
Y. Benny ◽  
S. Gliksman ◽  
A. Glozman ◽  
E. Hojman ◽  
...  

1958 ◽  
Vol 3 (6) ◽  
pp. 772-773 ◽  
Author(s):  
D. Meneghetti ◽  
H. H. Hummel ◽  
W. B. Loewenstein

2009 ◽  
Vol 79-82 ◽  
pp. 1383-1386
Author(s):  
Yun Lin Chen ◽  
Hai Wei Li ◽  
Yuan An Li

Using the tightly focused visible light (wavelength λ=488nm) illuminating, the ferroelectric domain patterns of the undoped lithium niobate crystal have been demonstrated. The influence of the visible light intensity on the domain nucleation field was investigated. The reduction of nucleation field decreases exponentially with increasing incident irradiation intensity. Once a domain is nucleated it can be dictated by the far-field light diffraction patterns. An assumption is proposed that the reduction of nucleation field is directly related to the defects mobility and structure of the crystals.


2021 ◽  
Author(s):  
Thomas Laepple ◽  
Thomas Münch ◽  
Torben Kunz ◽  
Mathieu Casado ◽  
Maria Hoerhold

<p>To recover very old climate information from ice core records, one needs to interpret the deepest part of an ice core. As the oldest record, the Dome-C ice core can serve as an analogue for the Beyond EPICA Oldest Ice Core that is currently being drilled.<br><br>Pol et al., EPSL 2010 analyzed high resolution water isotope data from the Dome-C ice core and found evidence for a limited preservation of climate variability in the deep section of the core due to mixing and diffusion. For instance, for Marine Isotope Stage 19, the study estimated a mixing/diffusion length between 40 and 60 cm, a value more than double than what is predicted by current firn and ice diffusion models. Knowing the diffusion length is important to interpret the isotope signal and is the basis to deconvolve climate records. As a result, it is key to bridge the gap in the estimation of the diffusion length between potentially biased statistical methods and firn and ice diffusion models.<br>We review this diffusion length estimate for MIS19, and also outline a new general method how to estimate the diffusion length in highly thinned deep ice.  This approach presents an important tool for better characterizing the preservation of the climate signal in old ice and thus for designing optimal sampling and recovery strategies.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document