scholarly journals Large H2O solubility in dense silica and its implications for the interiors of water-rich planets

2020 ◽  
Vol 117 (18) ◽  
pp. 9747-9754 ◽  
Author(s):  
Carole Nisr ◽  
Huawei Chen ◽  
Kurt Leinenweber ◽  
Andrew Chizmeshya ◽  
Vitali B. Prakapenka ◽  
...  

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in H2O-rich setting at high pressures and temperatures (P−T) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between SiO2 and H2O as archetypal materials for rock and ice, respectively, at high P−T. We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the CaCl2-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of (Si1−xH4x)O2 (x=0.12). At pressures above 60 GPa, H2O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.

2010 ◽  
Vol 24 (03) ◽  
pp. 315-324
Author(s):  
ZI-JIANG LIU ◽  
XIAO-WEI SUN ◽  
CAI-RONG ZHANG ◽  
LI-NA TIAN ◽  
YUAN GUO

The thermodynamic properties of MgSiO 3 post-perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines with ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state of MgSiO 3 post-perovskite is in excellent agreement with the latest observed values. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion, and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49214-49220 ◽  
Author(s):  
Xiaofeng Li ◽  
Junyi Du

Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stability and electronic properties of NbB3 under high pressures.


2014 ◽  
Vol 19 (4) ◽  
pp. 235-240
Author(s):  
Jun Hu ◽  
Xiao-yong Fan ◽  
Chao-Ming Wang

The absorption and possible reaction paths during corrosion have been systematically identified at the molecular level by us-ing density functional theory calculations. The results show that the co-adsorbed water molecule has a two-fold impact on the corrosive kinetics process. The one is the solvation effect, where water molecule affects the various reactions through ion dipole interaction, without bond fracture and formation. Another is the H-transfer mediator, where the bond of co-adsorbed water molecule breaks and regenerates in order to transfer hydrogen atoms.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3672
Author(s):  
Cheuk-Fai Chow ◽  
Chow-Shing Lam ◽  
Kai-Chung Lau ◽  
Cheng-Bin Gong

A new mechanochemical method was developed to convert polymer wastes, polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC), to fuel gases (H2, CH4, and CO) under ball-milling with KMnO4 at room temperature. By using various solid-state characterizations (XPS, SEM, EDS, FTIR, and NMR), and density functional theory calculations, it was found that the activation followed the hydrogen atom transfer (HAT) mechanism. Two metal oxidant molecules were found to abstract two separate hydrogen atoms from the α–CH and β–CH units of substrates, [–βCH2–αCH(R)–]n, where R = H in PE, R = γCH3 in PP, and R = Cl in PVC, resulting in a di-radical, [–βCH•–αC•(R)–]. Subsequently, the two unpaired electrons of the di-radical were recombined into an alkene intermediate, [–βCH =αC(R)–], which underwent further oxidation to produce H2, CH4, and CO gases.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Hassan Harb ◽  
Lee Thompson ◽  
Hrant Hratchian

Lanthanide hydroxides are key species in a variety of catalytic processes and in the preparation of corresponding oxides. This work explores the fundamental structure and bonding of the simplest lanthanide hydroxide, LnOH (Ln=La-Lu), using density functional theory calculations. Interestingly, the calculations predict that all structures of this series will be linear. Furthermore, these results indicate a valence electron configuration featuring an occupied sigma orbital and two occupied pi orbitals for all LnOH compounds, suggesting that the lanthanide-hydroxide bond is best characterized as a covalent triple bond.


2019 ◽  
Author(s):  
Anshuman Kumar ◽  
Reinhard Schweitzer-Stenner ◽  
Bryan Wong

In this work, we carry out new time-dependent density functional theory calculations on the cationic tripeptide GAG in implicit and explicit water to determine the transitions that give rise to the observed CD signals of polyproline II and β-strand conformations. Our results reveal a plethora of electronic transitions that are governed by configurational interactions between multiple molecular orbital transitions of comparable energy. We also show that reproducing the CD spectra of polyproline II and β-strand conformations requires the explicit consideration of water molecules. The structure dependence of delocalized occupied orbitals contributes to the experimentally-observed invalidation of Flory’s isolated pair hypothesis.


Sign in / Sign up

Export Citation Format

Share Document