mass spec
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 38)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi99-vi99
Author(s):  
Darwin Kwok ◽  
Takahide Nejo ◽  
Joseph Costello ◽  
Hideho Okada

Abstract BACKGROUND While immunotherapy is profoundly efficacious in certain cancers, its success is limited in cancers with lower mutational burden, such as gliomas. Therefore, investigating neoantigens beyond those from somatic mutations can expand the repertoire of immunotherapy targets. Recent studies detected alternative-splicing (AS) events in various cancer types that could potentially translate into tumor-specific proteins. Our study investigates AS within glioma to identify novel MHC-I-presented neoantigen targets through an integrative transcriptomic and proteomic computational pipeline, complemented by an extensive spatiotemporal analysis of the AS candidates. METHODS Bulk RNA-seq of high tumor purity TCGA-GBM/LGG (n=429) were analyzed through a novel systematic pipeline, and tumor-specific splicing junctions (neojunctions) were identified in silico by cross-referencing with bulk RNA-seq of GTEx normal tissue (n=9,166). Two HLA-binding prediction algorithms were subsequently incorporated to predict peptide sequences with high likelihood for HLA-presentation. Investigation of the tumor-wide clonality and temporal stability of the candidates was performed on extensive RNA-seq data from our spatially mapped intratumoral samples and longitudinally collected tumor tissue RNA-seq. Proteomic validation was conducted through mass-spec analysis of the Clinical Proteomic Tumor Analysis Consortium (CPTAC)-GBM repository (n=99). RESULTS Our analysis of TCGA-GBM/LGG bulk RNA-seq identified 249 putative neojunctions that translate into 222 cancer-specific peptide sequences which confer 21,489 tumor-specific n-mers (8-11 amino acids in length). Both prediction algorithms concurrently identified 271 n-mers likely to bind and be presented by HLA*A0101, HLA*A0201, HLA*A0301, HLA*A1101, or HLA*A2402. We confirmed the expression of 15 out of 58 HLA*A0201-binding candidates in HLA*A0201+ patient-derived glioma cell line RNA-seq with a subset of candidates conserved spatially. Analysis of CPTAC-GBM mass-spec data detected 23 tumor-specific peptides with 5 containing detected n-mers highly predicted to be HLA-presented. CONCLUSION Tumor-specific neojunctions identified in our unique integrative pipeline present novel candidate immunotherapy targets for gliomas and offer a new avenue in neoantigen discovery across cancer types.


2021 ◽  
Author(s):  
Yasin El Abiead ◽  
Maximilian Milford ◽  
Harald Schoeny ◽  
Mate Rusz ◽  
Reza M Salek ◽  
...  

Automated data pre-processing (DPP) forms the basis of any liquid chromatography-high resolution mass spec-trometry-driven non-targeted metabolomics experiment. However, current strategies for quality control of this im-portant step have rarely been investigated or even discussed. We exemplified how reliable benchmark peak lists could be generated for eleven publicly available datasets acquired across different instrumental platforms. Moreover, we demonstrated how these benchmarks can be utilized to derive performance metrics for DPP and tested whether these metrics can be generalized for entire datasets. Relying on this principle, we cross-validated different strategies for quality assurance of DPP, including manual parameter adjustment, variance of replicate injection-based metrics, unsupervised clustering performance, automated parameter optimization, and deep learning-based classification of chromatographic peaks. Overall, we want to highlight the importance of assessing DPP performance on a regular basis.


2021 ◽  
pp. 8-20

Micellar therapy has become a usefully viable treatment arm in various fields, ranging from oncology to bioimaging. As such, research leading to any improvements or adaptations in administration and techniques can have far-reaching consequences. Potential aspects of prebiotic chemistry may also be explored in such research as well. To that end, proof-of-concept experiments were performed to elucidate a possible mechanism of action for prebiotic protocell division. Representative potentially prebiotically plausible biomolecules, i.e., a fatty acid, amino acid, and nucleotide were mixed and heated in water and subjected to microscopic examination for observation of possible self-division and laboratory testing for the presence of polypeptides and polynucleotides (Biuret, MALDI mass-spec, etc.) with and without the presence of nucleotide. The results are presented for the first time here and a mechanism is proposed that best fits the data obtained. The evolutionary, e.g., prebiotic biomolecular cooperativity, and clinical, e.g., potential antineoplastic micellar/vesicular therapy, ramifications are discussed as well. Keywords: Micelle; Liposome; Protocell; MRNA; Self-division; Mechanism; Solid tumors


2021 ◽  
Vol 12 ◽  
Author(s):  
Kathryn A. K. Finton ◽  
Mi-Youn Brusniak ◽  
Lisa A. Jones ◽  
Chenwei Lin ◽  
Andrew J. Fioré-Gartland ◽  
...  

Conventional immunoprecipitation/mass spectroscopy identification of HLA-restricted peptides remains the purview of specializing laboratories, due to the complexity of the methodology, and requires computational post-analysis to assign peptides to individual alleles when using pan-HLA antibodies. We have addressed these limitations with ARTEMIS: a simple, robust, and flexible platform for peptide discovery across ligandomes, optionally including specific proteins-of-interest, that combines novel, secreted HLA-I discovery reagents spanning multiple alleles, optimized lentiviral transduction, and streamlined affinity-tag purification to improve upon conventional methods. This platform fills a middle ground between existing techniques: sensitive and adaptable, but easy and affordable enough to be widely employed by general laboratories. We used ARTEMIS to catalog allele-specific ligandomes from HEK293 cells for seven classical HLA alleles and compared results across replicates, against computational predictions, and against high-quality conventional datasets. We also applied ARTEMIS to identify potentially useful, novel HLA-restricted peptide targets from oncovirus oncoproteins and tumor-associated antigens.


Bioanalysis ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 203-238
Author(s):  
Hendrik Neubert ◽  
Stephen C Alley ◽  
Anita Lee ◽  
Wenying Jian ◽  
Michael Buonarati ◽  
...  

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15–29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.


Sign in / Sign up

Export Citation Format

Share Document