half wave voltage
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 823
Author(s):  
Shihao Sun ◽  
Mengyue Xu ◽  
Mingbo He ◽  
Shengqian Gao ◽  
Xian Zhang ◽  
...  

Optical modulators were, are, and will continue to be the underpinning devices for optical transceivers at all levels of the optical networks. Recently, heterogeneously integrated silicon and lithium niobate (Si/LN) optical modulators have demonstrated attractive overall performance in terms of optical loss, drive voltage, and modulation bandwidth. However, due to the moderate Pockels coefficient of lithium niobate, the device length of the Si/LN modulator is still relatively long for low-drive-voltage operation. Here, we report a folded Si/LN Mach–Zehnder modulator consisting of meandering optical waveguides and meandering microwave transmission lines, whose device length is approximately two-fifths of the unfolded counterpart while maintaining the overall performance. The present devices feature a low half-wave voltage of 1.24 V, support data rates up to 128 gigabits per second, and show a device length of less than 9 mm.


Author(s):  
M. Saravanan

The crystals N-(2-chlorophenyl)-(1-propanamide) (NCP) appropriate for nonlinear optical (NLO) and electro–optic appliances were grown full-fledged by the slow cooling method. The solubility and metastable zone width range of NCP specimen were studied. The specimen crystallizes in the monoclinic crystal system with noncentrosymmetric space group of P21. The crystal morphology study also elucidates supplementary excellence of the as-grown NCP crystal. The optical precision in the whole visible region was found to be superior for NLO claim. The crystallinity of the full-fledged crystal is determined by etching and HRXRD. Laser harm threshold and photoluminescence studies delegate the grown crystal comprises extremely less imperfections. The mechanical deeds of NCP sample at assorted temperatures were examined to decide the hardness solidity of the grown specimen. The piezoelectric behavior and the comparative second harmonic generation for assorted particle sizes of the material were also deliberate. The third-order nonlinear ocular possessions of NCP crystal specimen were determined by [Formula: see text]-scan method. The optical homogeneity of the solitary crystal was assessed using customized channel spectrum technique. The thermal structures of NCP solitary crystal have been studied using photopyroelectric method. The half-wave voltage of the full-fledged crystal was intended from the electro–optic experimentation. Photoconductivity nature of the grown crystal outlined consummate inducing dipoles due to strong incident radiation and further revealed the nonlinear deeds of the grown material.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1112
Author(s):  
Yu-En Wu ◽  
Jyun-Wei Wang

This study developed a novel, high-efficiency, high step-up DC–DC converter for photovoltaic (PV) systems. The converter can step-up the low output voltage of PV modules to the voltage level of the inverter and is used to feed into the grid. The converter can achieve a high step-up voltage through its architecture consisting of a three-winding coupled inductor common iron core on the low-voltage side and a half-wave voltage doubler circuit on the high-voltage side. The leakage inductance energy generated by the coupling inductor during the conversion process can be recovered by the capacitor on the low-voltage side to reduce the voltage surge on the power switch, which gives the power switch of the circuit a soft-switching effect. In addition, the half-wave voltage doubler circuit on the high-voltage side can recover the leakage inductance energy of the tertiary side and increase the output voltage. The advantages of the circuit are low loss, high efficiency, high conversion ratio, and low component voltage stress. Finally, a 500-W high step-up converter was experimentally tested to verify the feasibility and practicability of the proposed architecture. The results revealed that the highest efficiency of the circuit is 98%.


2021 ◽  
Vol 33 (4) ◽  
pp. 217-220
Author(s):  
Honggang Chen ◽  
Bo Zhang ◽  
Leilei Hu ◽  
Xuerui Liang ◽  
Feng Li

2021 ◽  
Vol 19 (6) ◽  
pp. 060016
Author(s):  
Xuecheng Liu ◽  
Bing Xiong ◽  
Changzheng Sun ◽  
Jian Wang ◽  
Zhibiao Hao ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 870
Author(s):  
Cheng-Kai Yang ◽  
Xu-Ping Wang ◽  
Fei Zhang ◽  
Hua-Di Zhang ◽  
Bing Liu ◽  
...  

KTa0.65Nb0.35O3 and Fe-doped KTa0.65Nb0.35O3 crystals were grown by the top-seeded solution growth method (TSSG). Fe ion doping significantly improves the electro-optic properties of cubic KTN crystals. We describe their electro-optic modulation theory and experimental research. The electro-optic modulation waveform deduced by theoretical calculation is basically consistent with the waveform measured in the experiment. We observed the attenuation of light modulation under multiple voltage cycles. The modulation curve of the crystal is inconsistent when the crystal voltage is boosting and bucking. Under the same voltage condition, the higher the incident light power, the faster the modulation depth attenuation. In this experiment, the size of the KTN crystal chip is 6 mm × 5 mm × 2 mm. We obtain the effective electro-optic coefficient as s11 − s12 = 1.34 × 10−15 m2/V2; the half-wave voltage near the Curie temperature is 39 V.


2020 ◽  
Vol 1002 ◽  
pp. 132-139
Author(s):  
Sabah Al-Ithawi ◽  
Wasan A. Hekmat ◽  
Kadhim A. Hubeatir ◽  
Shams B. Ali ◽  
Suad M. Kadhim ◽  
...  

In this work, different sizes of BaTiO3 (BTO) were characterized. The effective parameters were studied to reach optimum performance in order to realize an optical modulator. The parameters such as spectroscopy, electro-optic coefficient, crystalline structure, and birefringence indicated that BaTiO3 has an excellent behavior to manipulate the light by Pockels modulator, spatially in the field of telecom. The sample size (10×3 mm) was shown a good performance compare with other samples, for example, the BTO has low absorption, high variation of output as a function of voltage applied and good efficiency that showed by figure of merit. In addition, a low half-wave voltage (Vπ) was observed.


2020 ◽  
Author(s):  
Feng Xu ◽  
Ge Zhang ◽  
Min Luo ◽  
Guang Peng ◽  
Yu Chen ◽  
...  

Abstract The electro-optic crystal holds great promise for extensive applications in optoelectronics and optical communication. However, the discovery of novel electro-optic crystals is sporadic due to the difficulties of large-sized crystal growth for electro-optic coefficient measurement. Herein, to address this issue, a high-efficacy evaluation method using accessible powder samples is proposed in which the second-harmonic-generation effect, infrared reflectance spectrum and Raman spectrum are introduced to predict the magnitude of the electro-optic coefficient. The calculated electro-optic coefficients of numerous reported electro-optic crystals through this approach give universal agreement to the experimental values, evidencing the validity of the strategy. Based on this method, CsLiMoO4 is screened as a novel potential electro-optic crystal and a high-quality crystal is grown by the Czochralski technique for electro-optic coefficient measurement using the half-wave voltage method, the result of which is also comparable to the calculated value. Consequently, the evaluation strategy presented here will pave a new way to explore promising electro-optic crystals efficiently.


Sign in / Sign up

Export Citation Format

Share Document