Studying the Swirl Flow Hydrodynamics in the Guiding Channel Area Downstream of Mixing Spacer Grids of a PWR Reactor Fuel Assembly

2021 ◽  
Vol 68 (3) ◽  
pp. 201-208
Author(s):  
S. M. Dmitriev ◽  
A. V. Gerasimov ◽  
A. A. Dobrov ◽  
D. V. Doronkov ◽  
A. P. Zhivoderov ◽  
...  
2019 ◽  
Vol 34 (4) ◽  
pp. 313-324
Author(s):  
M. Khizer ◽  
Zhang Yong ◽  
Yang Guowei ◽  
Wu Qingsheng ◽  
Wu Yican

In this study, the structural integrity of liquid metal fast reactor fuel assembly has been established for different parameters considering the optimum fuel design. Analytical calculation of added mass effect due to lead bismuth eutectic and verification through previously presented theories, has been established. The integrity of the hexagonal wrapper of fuel assembly has been guaranteed over the entire operating temperature range. Effect of temperature on the density of lead bismuth eutectic, the subsequent change in added mass of lead bismuth eutectic, the effect on natural frequencies and effect on stresses on wrapper, has been studied in detail. A simple empirical relationship is presented for estimation of added mass effect for lead bismuth eutectic type fast reactors for any desired temperature. An approach for assessment of fast reactor fuel assembly performance has been outlined and calculated results are presented. Nuclear seismic rules require that systems and components which are important to safety, shall be capable of bearing earthquake effects and their integrity and functionality should be guaranteed. Mode shapes, natural frequencies, stresses on wrapper and seismic aspect has also been considered using ANSYS. Modal analysis has been compared in vacuum and lead bismuth eutectic using the calculated added mass.


2016 ◽  
Vol 298 ◽  
pp. 218-228 ◽  
Author(s):  
E. Merzari ◽  
P. Fischer ◽  
H. Yuan ◽  
K. Van Tichelen ◽  
S. Keijers ◽  
...  

2017 ◽  
Vol 110 ◽  
pp. 1091-1097
Author(s):  
Ryan Stewart ◽  
Chad Pope ◽  
Emerald Ryan

2018 ◽  
Vol 245 ◽  
pp. 09017
Author(s):  
Sergei Dmitriev ◽  
Alexander Khrobostov ◽  
Maksim Legchanov ◽  
Alexander Dobrov

An innovative core with an increased energy resource was used when designing RITM-200 reactor unit. The paper presents the results of experimental and numerical simulation of hydrodynamic processes occurring in the inlet region of the RITM reactor fuel assembly model. Computational mesh of fuel assembly, containing ~ 22 million elements was created using Ansys ICEM CFD. The values of relative axial velocities in several cross sections at the inlet to the bundle of fuel elements are obtained. At the inlet to the fuel rods bundle the velocity field is not uniform, due to the complex geometry of the fuel assembly. The obtained results of CFD-simulation can be used to determine the input boundary conditions for subchannel programs of the core thermal-hydraulic analysis. This allows taking into account uneven flow rate distribution in subchannels due to the complex geometry of the fuel assembly inlet region.


Sign in / Sign up

Export Citation Format

Share Document