operon prediction
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 0)

2022 ◽  
Vol 18 (1) ◽  
pp. e1009731
Author(s):  
Raga Krishnakumar ◽  
Anne M. Ruffing

Operon prediction in prokaryotes is critical not only for understanding the regulation of endogenous gene expression, but also for exogenous targeting of genes using newly developed tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics data to predict operons, based on the premise that contiguous genes in an operon will be expressed at similar levels. While promising results have been observed using these methods, most of them do not address uncertainty caused by technical variability between experiments, which is especially relevant when the amount of data available is small. In addition, many existing methods do not provide the flexibility to determine the stringency with which genes should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the same RNA molecule. We implement a voting system to allow users to choose the stringency of operon calls depending on whether your priority is high recall or high specificity. In addition, we provide the code so that users can retrain the algorithm and re-establish hyperparameters based on any data they choose, allowing for this method to be expanded as additional data is generated. We show that our approach detects operon pairs that are missed by current methods by comparing our predictions to publicly available long-read sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, flexibility, and adaptability.


2021 ◽  
Author(s):  
Raga Krishnakumar ◽  
Anne M Ruffing

Operon prediction in prokaryotes is critical not only for understanding the regulation of endogenous gene expression, but also for exogenous targeting of genes using newly developed tools such as CRISPR-based gene modulation. A number of methods have used transcriptomics data to predict operons, based on the premise that contiguous genes in an operon will be expressed at similar levels. While promising results have been observed using these methods, most of them do not address uncertainty caused by technical variability between experiments, which is especially relevant when the amount of data available is small. In addition, many existing methods do not provide the flexibility to determine whether the stringency with which genes should be evaluated for being in an operon pair. We present OperonSEQer, a set of machine learning algorithms that uses the statistic and p-value from a non-parametric analysis of variance test (Kruskal-Wallis) to determine the likelihood that two adjacent genes are expressed from the same RNA molecule. We implement a voting system to allow users to choose the stringency of operon calls depending on whether your priority is high coverage of operons or high accuracy of the calls. In addition, we provide the code so that users can retrain the algorithm and re-establish hyperparameters based on any data they choose, allowing for this method to be expanded on as additional data is generated and incorporated. We show that our approach detects operon pairs that are missed by current methods by comparing our predictions to publicly available long-read sequencing data. OperonSEQer therefore improves on existing methods in terms of accuracy, flexibility and adaptability.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Syed Shujaat Ali Zaidi ◽  
Masood Ur Rehman Kayani ◽  
Xuegong Zhang ◽  
Younan Ouyang ◽  
Imran Haider Shamsi

Abstract Background Efficient regulation of bacterial genes in response to the environmental stimulus results in unique gene clusters known as operons. Lack of complete operonic reference and functional information makes the prediction of metagenomic operons a challenging task; thus, opening new perspectives on the interpretation of the host-microbe interactions. Results In this work, we identified whole-genome and metagenomic operons via MetaRon (Metagenome and whole-genome opeRon prediction pipeline). MetaRon identifies operons without any experimental or functional information. MetaRon was implemented on datasets with different levels of complexity and information. Starting from its application on whole-genome to simulated mixture of three whole-genomes (E. coli MG1655, Mycobacterium tuberculosis H37Rv and Bacillus subtilis str. 16), E. coli c20 draft genome extracted from chicken gut and finally on 145 whole-metagenome data samples from human gut. MetaRon consistently achieved high operon prediction sensitivity, specificity and accuracy across E. coli whole-genome (97.8, 94.1 and 92.4%), simulated genome (93.7, 75.5 and 88.1%) and E. coli c20 (87, 91 and 88%,), respectively. Finally, we identified 1,232,407 unique operons from 145 paired-end human gut metagenome samples. We also report strong association of type 2 diabetes with Maltose phosphorylase (K00691), 3-deoxy-D-glycero-D-galacto-nononate 9-phosphate synthase (K21279) and an uncharacterized protein (K07101). Conclusion With MetaRon, we were able to remove two notable limitations of existing whole-genome operon prediction methods: (1) generalizability (ability to predict operons in unrelated bacterial genomes), and (2) whole-genome and metagenomic data management. We also demonstrate the use of operons as a subset to represent the trends of secondary metabolites in whole-metagenome data and the role of secondary metabolites in the occurrence of disease condition. Using operonic data from metagenome to study secondary metabolic trends will significantly reduce the data volume to more precise data. Furthermore, the identification of metabolic pathways associated with the occurrence of type 2 diabetes (T2D) also presents another dimension of analyzing the human gut metagenome. Presumably, this study is the first organized effort to predict metagenomic operons and perform a detailed analysis in association with a disease, in this case type 2 diabetes. The application of MetaRon to metagenomic data at diverse scale will be beneficial to understand the gene regulation and therapeutic metagenomics.


2020 ◽  
Vol 49 (D1) ◽  
pp. D622-D629
Author(s):  
Le Huang ◽  
Bowen Yang ◽  
Haidong Yi ◽  
Amina Asif ◽  
Jiawei Wang ◽  
...  

Abstract CRISPR–Cas is an anti-viral mechanism of prokaryotes that has been widely adopted for genome editing. To make CRISPR–Cas genome editing more controllable and safer to use, anti-CRISPR proteins have been recently exploited to prevent excessive/prolonged Cas nuclease cleavage. Anti-CRISPR (Acr) proteins are encoded by (pro)phages/(pro)viruses, and have the ability to inhibit their host's CRISPR–Cas systems. We have built an online database AcrDB (http://bcb.unl.edu/AcrDB) by scanning ∼19 000 genomes of prokaryotes and viruses with AcrFinder, a recently developed Acr-Aca (Acr-associated regulator) operon prediction program. Proteins in Acr-Aca operons were further processed by two machine learning-based programs (AcRanker and PaCRISPR) to obtain numerical scores/ranks. Compared to other anti-CRISPR databases, AcrDB has the following unique features: (i) It is a genome-scale database with the largest collection of data (39 799 Acr-Aca operons containing Aca or Acr homologs); (ii) It offers a user-friendly web interface with various functions for browsing, graphically viewing, searching, and batch downloading Acr-Aca operons; (iii) It focuses on the genomic context of Acr and Aca candidates instead of individual Acr protein family and (iv) It collects data with three independent programs each having a unique data mining algorithm for cross validation. AcrDB will be a valuable resource to the anti-CRISPR research community.


2020 ◽  
Author(s):  
Syed Shujaat Ali Zaidi ◽  
Masood Ur Rehman Kayani ◽  
Xuegong Zhang ◽  
Imran Haider Shamsi

Abstract Background: Efficient regulation of bacterial genes against the environmental stimulus results in unique operonic organizations. Lack of complete reference and functional information makes metagenomic operon prediction challenging and therefore opens new perspectives on the interpretation of the host-microbe interactions. Methods: Here we present MetaRon (pipeline for the prediction of Metagenomic operons), an open-source pipeline explicitly designed for the metagenomic shotgun sequencing data. It recreates the operonic structure without functional information. MetaRon identifies closely packed co-directional gene clusters with a promoter upstream and downstream of the first and last gene, respectively. Promoter prediction marks the transcriptional unit boundary (TUB) of closely packed co-directional gene clusters.Results: Escherichia coli (E. coli) K-12 MG1655 presents a gold standard for operon prediction. Therefore, MetaRon was initially implemented on two simulated illumina datasets: (1) E. coli MG1655 genome (2) a mixture of E. coli MG1655, Mycobacterium tuberculosis H37Rv and Bacillus subtilis str. 168 genomes. Operons were predicted in the single genome and mixture of genomes with a sensitivity of 97.8% and 93.7%, respectively. In the next phase, operons predicted from E. coli c20 draft genome isolated from chicken gut metagenome achieved a sensitivity of 94.1%. Lastly, the application of MetaRon on 145 paired-end gut metagenome samples identified 1,232,407 unique operons. Conclusion: MetaRon removes two notable limitations of existing methods: (1) dependency on functional information, and (2) liberates the users from enormous metagenomic data management. Current study showed the idea of using operons as subset to represent the whole-metagenome in terms of secondary metabolites and demonstrated its effectiveness in explaining the occurrence of a disease condition. This will significantly reduce the hefty whole-metagenome data to a small more precise data set. Furthermore, metabolic pathways from the operonic sequences were identified in association with the occurrence of type 2 diabetes (T2D). Presumably, this is the first organized effort to predict metagenomic operons and perform a detailed analysis in association with a disease, in this case T2D. The application of MetaRon to metagenome data at diverse scale will be beneficial to understand the gene regulation and therapeutic metagenomics.


2015 ◽  
Vol 10 (3) ◽  
pp. 299-305
Author(s):  
Kanhu Moharana ◽  
Manas Dikhit ◽  
Bikash Sahoo ◽  
Ganesh Sahoo ◽  
Pradeep Das

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kashish Chetal ◽  
Sarath Chandra Janga

Background. In prokaryotic organisms, a substantial fraction of adjacent genes are organized into operons—codirectionally organized genes in prokaryotic genomes with the presence of a common promoter and terminator. Although several available operon databases provide information with varying levels of reliability, very few resources provide experimentally supported results. Therefore, we believe that the biological community could benefit from having a new operon prediction database with operons predicted using next-generation RNA-seq datasets.Description. We present operomeDB, a database which provides an ensemble of all the predicted operons for bacterial genomes using available RNA-sequencing datasets across a wide range of experimental conditions. Although several studies have recently confirmed that prokaryotic operon structure is dynamic with significant alterations across environmental and experimental conditions, there are no comprehensive databases for studying such variations across prokaryotic transcriptomes. Currently our database contains nine bacterial organisms and 168 transcriptomes for which we predicted operons. User interface is simple and easy to use, in terms of visualization, downloading, and querying of data. In addition, because of its ability to load custom datasets, users can also compare their datasets with publicly available transcriptomic data of an organism.Conclusion. OperomeDB as a database should not only aid experimental groups working on transcriptome analysis of specific organisms but also enable studies related to computational and comparative operomics.


Sign in / Sign up

Export Citation Format

Share Document